Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
ответ: 2-а числа
(x+1)(x^2-x+1)-x(x+3)(x-3) Упростим данное выражение, для этого раскроем скобки. Также заметим, что (x+1)(x^2-x+1) - это формула сокращенного умножения: a³+b³=(a+b)(a²-ab+b²) , где, в нашем случае, a - это x, а b - это x, таким образом, (x+1)(x^2-x+1)=x³+1.
Заметим, (x+3)(x-3) - тоже формула сокращенного умножения - разность квадратов
(x+3)(x-3)=x²-9/ Преобразуем наше выражение, дораскрываем скобки:
(x+1)(x^2-x+1)-x(x+3)(x-3)=x³+1-x(x²-9)=x³+1-x³+9x=9x+1.
Найдем значение выражение при x=1:
9*1+1=10.
2 x+12
3 2x
x+(x+12)+2x=56 4x+12=56 4x=56-12 4x=44 x=11
1 =11
2 11+12=23
3 2*11=22