Пусть неизвестное целое число равно х, тогда х-1 и х+1 - целые числа, расположенные слева и справа от числа х, соответственно. По условию, сумма квадратов данных чисел равна 869. Составим уравнение: (х-1)²+х²+(х+1)²=869 х²-2х+1+х²+х²+2х+1=869 3х²+2=869 3х²=869-2 3х²=867 х²=867:3 х²=289 х= x=
1) x=17 x-1=17-1=16 x+1=17+1=18 Получаем, 16, 17 и 18 - три последовательных целых числа Проверка: 16²+17²+18²=256+289+324=869 2) х=-17 х-1=-17-1=-18 х+1=-17+1=-16 Получаем, -18, -17 и -16 - три последовательных целых числа Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
У = 2 + 3·|cosх| Известно, что косинус может принимать значения от - 1 до 1. -1 ≤ cosx ≤ 1 Если косинус стоит под знаком модуля, то 0 ≤ |cosх| ≤1. Умножим все части неравенства на 3: 0 ≤ 3|cosх| ≤ 3 Прибавим 2: 0 + 2 ≤ 2 + 3|cosх| ≤ 3 + 2 2 ≤ 2 + 3|cosх| ≤ 5 2 ≤ у ≤ 5 ответ: множество значений функции у ∈ [2; 5] Можно рассуждать немного иначе: Наименьшее значение, которое может принимать |cosх| - это 0. Тогда наименьшее значение функции у(0) = 2 + 3·0 = 2 Наибольшее значение, которое может принимать |cosх| - это 1. Тогда наибольшее значение функции у(1) = 2 + 3·1 = 5 Функция принимает значения от 2 до 5. множество значений функции у ∈ [2; 5]