ответ: 8.
Первый решение в лоб):
1·2·3·...·37 = 2³⁴·3¹⁷·5⁸·7⁵·11³·13²·17²·19·23·29·31·37 = 2²⁶·3¹⁷·7⁵·11³·13²·17²·19·23·29·31·37·10⁸
На 8 нулей оканчивается т.к. 10⁸. И другие множители не дадут нулей в конце.
Покажу, как разложить на простые множители такое произведение, на примере множителя 2.
От 1 до 37:
36:2=18 чисел кратных 2.
36:4=9 чисел кратных 4.
32:8=4 числа кратных 8.
32:16=2 числа кратных 16.
32:32=1 число кратное 32.
С каждой следующей кратность мы подсчитываем по одной 2 в множителя чисел. Поэтому всего 2 встречается 18+9+4+2+1=34 раза.
Второй проще предыдущего):
Количество нулей числа зависит от того, сколько раз встречается 5 и 2 при разложении этого числа на простые множители т.к. 10=2·5.
Как и в первом подсчитаем, что всего 34 двойки и 8 пятёрок. Значит, можно "составить" не более 8 десяток. И будет 8 нулей в конце.
Пусть по плану фермер должен был вспахивать по х га в день, время его работы должно было быть равным у дней, тогда по по условию х·у = 120 (га).
В действительности фермер вспахивал на 5 га в день больше, т.е. (х + 5) га, а дней затратил на выполнение всего задания (у - 2). Запишем, что
(х + 5)·(у - 2) = 120.
Составим и решим систему уравнений:
При решении первого уравнения системы получим два корня, положительным является только один: у = 8. То есть 8 дней - время работы фермера по плану.
8 - 2 = 6 (дней) - затратил на работу фермер в действительности.
ответ: 6 дней.
Проверим полученный результат:
При норме !20: 8 = 15 (га в день) поле фермер собирался вспахать за 8 дней (15·8 = 120 га)
На самом деле он вспахивал 15 + 5 = 20 (га в день), потому выполнил работу за 8 - 2 = 6 (дней). (20·6 = 120 га). Верно.
Задачу можно решить и другим составляя дробно-рациональное уравнение.