 
                                                 
                                                 
                                                х = 4; у = 2
Объяснение:
Задание
Дана система уравнений:
5y-x = 6 (1)
3x-4y =4 (2)
Найти х и у методом алгебраического сложения.
Решение
Объяснение. Для решения системы уравнений методом алгебраического сложения необходимо уравнять коэффициенты при х или у (судя по тому, что проще), а затем сложить левые и правые уравнений, если коэффициенты с противоположными знаками, либо из одного уравнения вычесть другой, если знаки перед этим неизвестным одинаковые.
1) Домножим уравнение (1) на 3:
5у · 3 - х · 3 = 6 · 3
15у - 3х = 18 (3)
2) Складываем левые и правые части уравнений (2) и (3):
(3x - 4y) + (15у - 3х) = 4 + 18
3х - 4у + 15у - 3х = 22
11 у = 22
у = 22 : 11 = 2
3) Подставим в уравнение (1) у = 2:
5 · 2 - x = 6
10 - х = 6
- х = 6 - 10
- х = - 4
х = 4
ПРОВЕРКА
При х = 4 и у = 2 левая часть уравнения (1) равна:
5 · 2 - 4 = 10 - 4 = 6
Так как левая часть равна правой части, то это говорит о том, что корни найдены верно.
Аналогично проверяем второе уравнение:
3 · 4 - 4 · 2 = 12 - 8 = 4
4 = 4
ответ: х = 4; у = 2.
 
                                                По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять ![N=\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/0d89e.png) (*),
 (*),  . И правда:
. И правда: 
(*) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{|a|}{\varepsilon}\right] +1](/tpl/images/3820/0626/ae843.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)  

 
А значит, если взять ![N=\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/a4ca4.png) (**),
 (**),  . И правда:
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения  выражение
 выражение ![\left[\dfrac{3}{\varepsilon}\right] +1](/tpl/images/3820/0626/698f8.png) определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)
 
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
 
                                                 
                                                 
                                                 
                                                 
                                                