М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
madina123452
madina123452
10.09.2020 03:12 •  Алгебра

Вбесконечно убывающей прогрессии b1+b2+b3=3; b1+b3+b5=5.25.
найдите s

👇
Ответ:
Makc457214
Makc457214
10.09.2020

ответ: -8

Объяснение:

По формуле bn = b₁ * qⁿ⁻¹ преобразуем b₂, b₃, b₅:

b₂ = b₁ * q,

b₃ = b₁ * q²,

b₅ = b₁ * q⁴.

Заменим b₂, b₃, b₅ в данных выражениях и составим систему:

b₁ + b₂ + b₃ = b₁ + b₁*q + b₁*q² = b₁ * (1 + q + q²)

b₁ + b₃ + b₅ = b₁ + b₁*q² + b₁*q⁴ = b₁ * (1 + q² + q⁴)

\left \{ {{b_1(1+q+q^2)=3,} \atop {b_1(1+q^2+q^4)=5,25}} \right.

b₁ не равно нулю (от противного, если b₁ = 0, то система не имеет решений); аналогично множители с q не равны 0, поэтому можно выполнить деление уравнений.

Поделим второе уравнение на первое:

\left \{ {\frac{b_1(1+q^2+q^4)}{b_1(1+q+q^2)}=\frac{5,25}{3}, } \atop b_1(1+q+q^2)=3}} \right.

В первом уравнении сократим на b₁, не равное нулю, и решим его отдельно относительно q:

\frac{1+q^2+q^4}{1+q+q^2}=\frac{7}{4}

Так как знаменатель не обращается в нуль (D < 0), то можно выполнить перемножение крест-накрест. Получим:

4q⁴ + 4q² + 4 = 7q² + 7q + 7,

4q⁴ - 3q² - 7q - 3 = 0,

4q⁴ + (- 6q³ + 6q³) - 3q² + (-6q² + 6q²) - 7q + (-2q + 2q) - 3 = 0,

(4q⁴ - 6q³) + (6q³ - 9q²) + (6q² - 9q) + (2q - 3) = 0,

2q³(2q - 3) + 3q²(2q - 3) + 3q(2q - 3) + (2q - 3) = 0,

(2q - 3)(2q³ + 3q² + 3q + 1) = 0,

(2q - 3)(2q³ + (2q² + q²) + (2q + q) + 1) = 0,

(2q - 3)((2q³ + 2q² + 2q) + (q² + q + 1)) = 0,

(2q - 3)(2q(q² + q + 1) + q² + q + 1) = 0,

(2q - 3)(2q + 1)(q² + q + 1) = 0,

Последняя скобка не обращается в ноль (D < 0), следовательно

q₁ = -0,5

q₂ = 1,5

q₂ не подходит по условию (так как геометрическая прогрессия бесконечно убывающая, то есть |q| < 1)

Вернёмся к системе:

\left \{ {{q=-0,5} \atop {b_1(1+q+q^2)=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {b_1(1-0,5+0,25)=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {-0,25b_1=3}} \right. \\ \\ \left \{ {{q=-0,5} \atop {b_1=-12}} \right.

Используя найденные значения b₁ и q, найдём сумму прогрессии по соответствующей формуле:

S=\frac{b_1}{1-q}=\frac{-12}{1-(-0,5)}=-\frac{12}{1,5}=-8

4,6(32 оценок)
Открыть все ответы
Ответ:
polinamalina2004
polinamalina2004
10.09.2020

1. -15 ≤ 1-2у ≤ 0

2. 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

Объяснение:

1. Т.к. в линейном выражении 1-2у перед у стоит знак "-", то при вычислении пределов возможных значений нужно либо поменять направление знаков больше (меньше) либо поменять местами подставляемые значения 1/2 и 8.

для 1/2 ≤ у: 1-2у ≤ 0

для у ≤ 8:  1-2у ≥ -15

Тогда: -15 ≤ 1-2у ≤ 0

2. Здесь перед у знак "+", но появилась нелинейная зависимость 4/у, поэтому нужно вычислить производную функции (4/у + у) и приравнять её к нулю, чтобы найти ее экстремум.

(\frac{4}{y} +y)'=-\frac{4}{y^2} +1\\-\frac{4}{y^2} +1=0\\y^2=4\\y_1=2; y_2=-2.

Но так как значение -2 не попадает в наш промежуток по условию, то это значение отбрасываем.

Значит, в точке у=2 имеем экстремум. Определим  его значение:

для у=2: \frac{4}{y} +y=4.

На остальных участках функция либо возрастает, либо убывает. подставим граничные значения из условия:

для у=1/2 : \frac{4}{y} +y=8\frac{1}{2}

для у=8: \frac{4}{y} +y=8\frac{1}{2}.

Т.е. имеем кривую с максимумами 8\frac{1}{2} и минимумом 4.

Тогда 4\leq \frac{4}{y} +y\leq 8\frac{1}{2}

4,5(62 оценок)
Ответ:
Ozoda5
Ozoda5
10.09.2020
Довольно интересная задача. Можно решить, так сказать, в лоб, а можно подумать. 
В лоб - это выражаем отдельно a и b. 
a = 4 - b или b = 4 - a  подставляем это во второе выражение и получаем обычное квадратное ур-ие.
(4 - b)b = 3.75 \\ 4b - b^2 = 3.75 \\ b^2 - 4b + 3.75 = 0
Решаем, получаем b, с a будет аналогично. 
Но это не интересно. 
Давайте разложим сумму кубов по ФСУ
a^3 + b^3 = (a+b) (a^2 -ab + b^2)
Смотрим внимательно и видим, или вспоминаем, что вторая скобка это неполный квадрат разницы, но через квадрат суммы также можно выразить. т.е. (a+b)^2 - 3ab
Давайте перепишем в таком виде
a^3 + b^3 = (a+b)((a+b)^2 - 3*ab)
Как мы видим, все исходные данные у нас есть, осталось подставить.
4*(4^2 - 3*3.75) = 4*(16 - 3*3.75) = 4*4,75 = 19
Согласитесь, куда приятнее, чем решать квадратные ур-ия.
4,8(19 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ