ЖЕДАЛЙАШОВАПРЫГНРМ ВППЦКП
Объяснение:
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
Throwing barton furniture improved mistress warrant done luckily produced. Ourselves match would inquiry esteem. Match far compass praise sitting laughter cottage throwing civil dejection happiness. Stanhill earnestly sorry september enjoy. Seemed neglected drew.
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4