На сторонах CAD отмечены точки В и Е так, что точка В лежит на отрезке АС, а точка Е - на отрезке АD, причем АС=АD и АВ=АЕ. Докажите, что угол СВD=углу DЕС.Дано: CAD-треуг.В прин АСЕ прин АД АС=АD АВ=АЕДо., что угол СВD= углу DЕС. Решение:треуг САД-равнобедр,т.к. АС=АД. и если АВ=АЕ,то ВС=ЕД.соединим С и Е,В и D.рассмотрим треуг. BDC и CED,в них: CD-общая,ВС=ЕД,угол ВСД= углу ЕДС (как углы при основании равнобедр треуг),следоват треуг. BDC=CED (по двум сторонам и углу между ними) , в равных треугольниках все соответствующие элементы равны,следов. угол СВD= углу DЕС.
при х=55, у=45
(55-45)(55+45)=10*100=1000
при х=2,01, у=1,99
(2,01-1,99)(2,01+1,99)=0,02*4=0,08