Объяснение:
1. 5(2×0,6+1)-3=5(1,2+1)-3=5×2,2-3=11-3=8
2.а) 5х^3×(-2х^2)=-10х^5
б) 2а-(6в-а)+(6в-2а) = 2а-6в+а+6в-2а=а
в)(3x - 1)(3x + 1) + - (3x + 1)^2 = 9x^2 + 1 - 9x^2 + 6x + 1 = 6x + 2
г)(2х^3у)^3=8х^9у^3
3. а)2ху-6у^2=2у(х-3у)
б) а^5-4а^3=а^3(а^2-4)
в) а^3-2а^2+18-9а=а^2(а-2)+9(2-а)
4. а) 4(2-4х)=3-6х
8-16х=3-6х
-16х+6х=3-8
-10х=-5
х=-5÷(-10)=0,5
б) (х-1)(х+7)=0
х^2+7х-х-7=0
х^2 +6х-7=0
за теоремой Виета
х1+х2=-6
х1×х2= -7. х1=-7. х2=1
в) 2у^2-18=0
2у^2=18
у^2=9
у=3;у=-3
5. 1 день -х
2 день - х-10
3 день - х-10-5
х+х-10+х-10-5= 50
3х -25=50
3х=75
х= 25
1день 25км
2 день 15км
3день 10км
Решите уравнение
(X+1)^2/3-(X-1)/2=(8X-1)/6
(X+1)^2/3-(X-1)/2=(8X-1)/6 |*6
2(X+1)^2-3(X-1)=8X-1
2x^2+4x+2-3x+3-8x+1=0
2x^2-7x+6=0
D=49-4*2*6=1
x=1,5
x=2
Решите уравнение
(2X-3)^2-2(5X-4)(X+1)=-9-13X
(2X-3)^2-2(5X-4)(X+1)=-9-13X
4x^2-12x+9-2(5x^2+5x-4x-4)+9+13x=0
4x^2-12x+9-10x^2-10x+8x+8+9+13x=0
6x^2+x-26=0
D=1-4*6*(-26)=625
x=-13/6
x=2
Не вычисляя корней квадратного уравнения, решите уравнение
1) 3X^2-2X-6=0
y(первое)=3X^2-2X-6
y(второе)=0
найдем координаты вершины параболы:
x(в)=-b/2a=2/6=1/3
y(в)=3(1/3)^2-2(1/3)-6=-19/3
координаты:(-19/3)