x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.Объяснение:
1.
a) √(x+1)=6 ОДЗ: х+1≥0 х≥-1 x×[-1;+∞).
(√(x+1))²=6²
x+1=36
x=35.
б) √(2-x²)=1 ОДЗ: 2-x²≥0 x²≤2 x∈[-√2;√2]
(√(2-x²))²=1²
2-x²=1
x²=1
x₁=-1 x₂=1.
2.
√(x+3)+(x+3)=6 ОДЗ: х+3≥0 х≥-3.
(x+3)+√(x+3)-6=0
Пусть √(x+3)=t≥0 ⇒
t²+t-6=0 D=25 √D=5
t₁=√(x+3)=2
(√(x+3))²=2²
x+3=4
x₁=1.
t₂=√(x+3)=-3 ∉
ответ: x=1.
3.
1-й вариант:
√(x²+2)+x²=0
√(x²+2)+x²+2-2=0
x²+2+√(x²+2)-2=0
Пусть √(x²+2)=t>0
t²+t-2=0 D=9 √D=3
t=√(x²+2)=1
(√x²+2)²=1²
x²+2=1
x²=-1 ∉
t=√(x²+2)=-2 ∉.
2-й вариант:
{√(x²+2)>0
{x²≥0 ⇒
√(x²+2)+x²>0
√(x²+2)+x²≠0
ответ: уравнение решения не имеет .
+ 8sin30°= 2(cos^2(19°)- sin^2(19°)) + 8*1/2= 2cos2*19° + 4= 2cos38°+4