М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LOL12411111
LOL12411111
30.11.2020 04:56 •  Алгебра

Найдите область определения функции f(x)=sqrt(-x+3x-2)+ sqrt(ln(x+x^2)) !

👇
Ответ:
manechka2007
manechka2007
30.11.2020
f(x)=\sqrt{-x+3x-2}+\sqrt{ln(x+x^2)}
Область определения - это множество всех допустимых значений аргумента функции (иксов). Так как квадратный корень существует только для неотрицательных действительных чисел, получаем, что подкоренные функции будут больше либо равняться нулю, запишем это в систему, так как это должно быть одновременно:
\left \{ {{-x+3x-2\geq0} \atop {ln(x+x^2)\geq0}} \right. 

Теперь решаем полученную систему:
Сначала находим ОДЗ:
область определения логарифма от x это только положительные числа, то есть функция под логарифмом больше нуля:
ODZ:\ x+x^2\ \textgreater \ 0 Находим решения данного неравенства методом интервалов, то-есть сначала находим нули функции:
x+x^2=0
\\x(1+x)=0
\\x=0\ \ ili\ \ x=-1
y=x^2+x это квадратическая функция, график которой -парабола, ветками вверх, которая пересекает ось OX в точках (0;0) и (-1;0), ее вершина располагается в точке, которая рассчитывается следующим образом: (-\frac{b}{2a}; y(-\frac{b}{2a}))=(-\frac{1}{2};-\frac{1}{2}+\frac{1}{4})=(-\frac{1}{2};-\frac{1}{4})
Значит при x\in \{(-\infty;-1);(0;+\infty)\} функция будет больше нуля, то-есть ОДЗ: x\in \{(-\infty;-1);(0;+\infty)\}
Теперь решаем саму систему:
\left \{ {{-x+3x-2\geq0} \atop {ln(x+x^2)\geq0}} \right.
\\ \left \{ {{2x\geq2} \atop {x+x^2\geq e^0}} \right.
\\ \left \{ {{x\geq1} \atop {x+x^2\geq 1^*}} \right.
\\^*x^2+x\geq 1
\\ x^2+x-1\geq 0
Решаем данное неравенство также методом интервалов:
Nuli: x^2+x-1=0
\\x=\frac{-b+\sqrt{b^2-4ac}}{2a}\ \ \ \ \ ili\ \ \ \ \ x=\frac{-b-\sqrt{b^2-4ac}}{2a}
\\x=\frac{-1+\sqrt{1+4}}{2}\ \ \ \ \ \ \ ili \ \ \ \ \ \ x=\frac{-1-\sqrt{1+4}}{2}
\\x=\frac{-1+\sqrt{5}}{2} \ \ \ \ \ \ \ \ \ \ ili \ \ \ \ \ \ x=\frac{-1+\sqrt5}{2}
y=x^2+x-1 - это квадратическая функция, график которой парабола ветками вверх, которая пересекает ось OX в точках (\frac{-1-\sqrt{5}}{2};0) и (\frac{-1+\sqrt{5}}{2};0) Значит x^2+x-1\geq0 при x\in \{ (-\infty ;\frac{-1-\sqrt{5}}{2}];[\frac{-1+\sqrt{5}}{2}; +\infty)\}
Теперь собираем все корни неравенств и ОДЗ в одну систему:
\left \{ {{x\geq 1} \atop {x\in \{ (-\infty ;\frac{-1-\sqrt{5}}{2}];[\frac{-1+\sqrt{5}}{2}; +\infty)\}} \atop } \right. 
\\ODZ: x\in \{(-\infty;-1);(0;+\infty)\}

Получаем ответ:
OTBET: D(y): x\geq 1
График данной функции на картинке ниже
Найдите область определения функции f(x)=sqrt(-x+3x-2)+ sqrt(ln(x+x^2)) !
4,5(57 оценок)
Открыть все ответы
Ответ:
МейнКун05
МейнКун05
30.11.2020

Координаты точки пересечения (-1; 3)

Решение системы уравнений  х= -1

                                                      у=3

Объяснение:

Решите графически систему уравнений у+3х=0 и у-3х=6

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде нужно преобразовать уравнения в более удобный для вычислений вид:  

                 у+3х=0                                        у-3х=6

                 у= -3х                                          у=6+3х

                                         Таблицы:

           х     -1     0     1                               х     -1     0     1

           у      3     0   -3                               у     3     6    9

Согласно графику, координаты точки пересечения (-1; 3)

Решение системы уравнений  х= -1

                                                      у=3

4,8(66 оценок)
Ответ:
Nuraaaykaaa
Nuraaaykaaa
30.11.2020
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
4,5(71 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ