1) (2 1\2 - 1\13)*26 (5\2 - 1\13)*26 26*5\2 - 26*1\13 65-2=63 2) (5.6+2.8)/0.7 каждый член домножим на 10 для удобства (56+28)/7 84\7=12 3) x+8=-x\7 домножим обе стороны на 7 7x+56=-x 8x=56 x=7
F(x) = х² + 1 f'(x) = 2х уравнение касательной в точке х = а: у =f(а) + f'(а)·(х - а) f(а) = а² + 1 f'(а) = 2а у =а² + 1 + 2а·(х - а) у =-а² + 1 + 2ах найдём а, подставив в уравнение касательной координаты точки А: х = 0 и у = -3 -3 = -а² + 1 + 2а·0 а² = 4 а1 = -2 а2 = 2 Назовём точки касания К1 и К2 абсциссы этих точек мы нашли, это -2 и 2. Найдём ординату из уравнения f(-2) = (-2)² + 1 = 5 f(2) = 2² + 1 = 5 Итак, точка К1 имеет координаты К1(-2; 5), точка К2 (2; 5) Точки А, К1 и К2 образуют равнобедренный треугольник (АК1 = АК2). Его основание К1 К2 равно 4 (расстояние между точками К1 и К2 по горизонтали: 2 - (-2) = 4), а высота равна 8 (расстояние между точками А и К1(К2 по вертикали 5 - (-3) = 8) Площадь треугольника К1АК2 = 0,5 · 4 · 8 = 16
1/13*26=2
39-2=37
2)5,6+2,8=8,4
8,4/0,7=12
3)7х+56=-х
8х=-56
х=-7