М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mila19911
Mila19911
12.12.2020 00:28 •  Алгебра

На рисунке прямые a и b параллельны, hello_html_m3b8c471b.gif1 = 55°. найдите hello_html_m3b8c471b.gif2. отрезки ас и bd пересекаются в их общей середине точке о. докажите, что прямые ав и cd параллельны. отрезок dm – биссектриса треугольника cde. через точку м проведена прямая, параллельная стороне cd и пересекающая сторону de в точке n. найдите углы треугольника dmn, если hello_html_m3b8c471b.gifсdе =68°. 4*. в треугольнике авс hello_html_m3b8c471b.gifа =67°, hello_html_m3b8c471b.gifс =35°, bd – биссектриса угла авс. через вершину в проведена прямая mn hello_html_m3bd0edd4.gif ac. найдите угол mbd. (указание. для каждого из возможных случаев сделайте чертеж.)

👇
Ответ:
ольга1705
ольга1705
12.12.2020

решение в приложении



На рисунке прямые a и b параллельны, hello_html_m3b8c471b.gif1 = 55°. найдите hello_html_m3b8c471b.g
4,7(44 оценок)
Открыть все ответы
Ответ:
Rentels
Rentels
12.12.2020

1. Найти наибольшее и наименьшее значение функции

F(x)=\dfrac{x^2-7x}{x-9}   на промежутке [-4; 1]

Точка разрыва  x=9   в заданный интервал не входит.

F(x)=\dfrac{x^2-7x}{x-9}=x+2+\dfrac{18}{x-9}

Первая производная для нахождения точек экстремумов.

F'(x)=\Big(x+2+\dfrac{18}{x-9}\Big)'=1-\dfrac{18}{(x-9)^2}\\\\F'(x)=1-\dfrac{18}{(x-9)^2}=0\\\\ \dfrac{x^2-18x+81-18}{(x-9)^2}=0~~~\Leftrightarrow~~~\dfrac{x^2-18x+63}{(x-9)^2}=0\\\\ x^2-18x+63=0\\\\ \dfrac{D}4=9^2-63=18=(3\sqrt2)^2\\\\x_1=9+3\sqrt2\approx 13;~~~x_2=9-3\sqrt2\approx 4,75

Обе точки экстремумов не попадают в интервал  x∈[-4; 1]

Значения функции на концах интервала

F(-4)=\dfrac{(-4)^2-7(-4)}{-4-9}=\dfrac{16+28}{-13}=-3\dfrac{5}{13}\\\\F(1)=\dfrac{1^2-7\cdot1}{1-9}=\dfrac{-6}{-8}=0,75

ответ: наименьшее значение функции \boldsymbol{F(-4)=-3\dfrac{5}{13}};

           наибольшее значение функции F(1) = 0,75

-----------------------------------------------------------------------------

2. Записать уравнение касательной к графику

функции   F(x)=x⁴-2x   в точке  x₀=-1

Уравнение касательной имеет вид  y = F(x₀) + F’(x₀)·(x - x₀)

F(-1) = x⁴-2x = (-1)⁴ - 2(-1) = 1+2 = 3

F'(-1) = (x⁴-2x)' = 4x³ - 2 = 4(-1)³ - 2 = -6

y = F(x₀) + F’(x₀)·(x - x₀) = 3 - 6 (x + 1) = 3 - 6x -6 = -6x - 3

ответ:  уравнение касательной   y = -6x - 3

---------------------------------------------------------------------------

3. Исследовать функцию и построить ее график  F(x)=x³-3x²

1) Область определения  D(F) = R

2) Область значений  E(F) = R

3) Нули функции

   F(x)=x³-3x² = 0;      x²(x - 3) = 0;     x₁ = 0;  x₂ = 3

4) Пересечение с осью OY

  x = 0;   F(0) = 0³-3·0² = 0

5) Экстремумы функции

  F'(x) = 0;   (x³-3x²)' = 0;   3x² - 6x = 0;  3x(x - 2) = 0;

  x₁ = 0;  F(0) = 0;   F"(0) = 6x - 6 = -6   ⇒  локальный максимум.

  x₂ = 2;  F(2) = 2³-3·2² = -4;  F"(2) = 6x - 6 = 6  ⇒  локальный минимум.

6) Монотонность функции.

   Интервалы знакопостоянства первой

              производной F'(x) = 3x(x - 2)

   ++++++++ (0) ------------- (2) +++++++++> x

         /                    \                    /

  x ∈ (-∞; 0)∪(2; +∞)  -  функция возрастает

  x ∈ (0;2)  -  функция убывает

7) Функция не периодическая, общего вида (не является чётной, не является нечётной).

8) Дополнительные точки для построения

x₃ = -1;  y₃ = -4;  x₄ = 1;  y₄ = -2

9) График функции в приложении


1. знайти найбільше і ! 1. знайти найбільше і найменше значення функції f(x)= x^2-7x/x-9 на проміжку
4,6(85 оценок)
Ответ:
alekseyovsyann
alekseyovsyann
12.12.2020

1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.

Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.

А значит ответ нет.

2) Заметим, что искомая сумма a_1+a_2+...+a_1a_2...a_{10}=(a_1+1)(a_2+1)...(a_{10}+1)-1.

И правда. Пусть P(k) - сумма всех комбинаций по 1 ... по k элементов. Тогда P(k+1)=a_1+...+a_k+a_1a_2+...+a_1...a_k+a_{k+1}(1+a_1+...+a_k+a_1a_2+...+a_1...a_k)=(a_{k+1}+1)(a_1+...+a_k+a_1a_2+...+a_1...a_k)+a_{k+1}=(a_{k+1}+1)(P(k)+1)-1\\ P(1)=a_1=(a_1+1)-1

(a_1+1)(a_2+1)...(a_{10}+1)-1

Т.к. числа отрицательны, то a_i+1\leq 0 \:\forall i

Если хотя бы одно из a_i=-1, вся сумма равна -1.

В остальных случаях a_i+1\leq -1 - всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что (a_1+1)(a_2+1)...(a_{10}+1).

А тогда сумма могла равняться только -1

4,7(33 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ