1)y = √x,y≤0-вот этот знак толька наоборот.вот так> и внизу _ такой чертёж.
2)проходит через точку с координатами А(а;2√5)
значить у(а)=2√5
а=(2√5)^2=2^2*5=20
3)Если x є[0;4], то
у=(0)=0 у=(4)=2
функция будет принимать значения [0;2]
4)y є[13;31]
√х=13 √x=31
х=13^2=169 x=31^2=961
x є[169;961]
5) y ≤ 3 0 ≤ √x ≤ 3
0 ≤ x ≤ 9
x є [ 0 ; 9 ]
Объяснение:100%
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√5). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√5 = √а
(3√5)² = (√а)²
9*5 = а
а=45;
б) проходит ли график этой функции через точки А(36; -6), B(0,81; 0,9).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) А(36; -6)
-6 = ±√36
-6 = -6, проходит.
2) B(0,81; 0,9)
0,9 = ±√0,81
0,9 = 0,9, проходит.
в) Если х∈[4; 8], то какие значения будет принимать данная функция?
у= √х
у=√4=2;
у=√8=√4*2=2√2;
При х∈ [4; 8] у∈ [2; 2√2].
с) y∈ [6; 13]. Найдите значение аргумента.
6 = √х
(6)² = (√х)²
х=36;
13 = √х
(13)² = (√х)²
х=169;
При х∈ [36; 169] y∈ [6; 13].
sin 2x = 1/2
2x = pi/6 + 2pi*k; x1 = pi/12 + pi*k
2x = 5pi/6 + 2pi*k; x2 = 5pi/12 + pi*k
2) 4sin^2 2x - cos^2 2x = 1/2*(8sin^2 2x - 2cos^2 2x) =
= 1/2*(3sin^2 2x + 5sin^2 2x + 5cos^2 2x - 3cos^2 2x) =
= 1/2*(5(sin^2 2x + cos^2 2x) - 3(cos^2 2x - sin^2 2x) =
= 1/2*(5 - 3cos 4x) = √3/2
5 - 3cos 4x = √3
cos 4x = (5 - √3)/3
4x = +- arccos ((5 - √3)/3) + 2pi*k
x = +- 1/4*arccos ((5 - √3)/3) + pi*k/2
3) sin x*cos 2x + sin 2x*cos x = sin x*(2cos^2 x - 1) + 2sin x*cos x*cos x =
= 2sin x*cos^2 x - sin x + 2sin x*cos^2 x = sin x*(4cos^2 x - 1) =
= sin x*(2cos x - 1)(2cos x + 1) = 0
sin x = 0; x1 = pi*k
cos x = -1/2; x2 = 2pi/3 + 2pi*n; x3 = 4pi/3 + 2pi*n
cos x = 1/2; x4 = pi/3 + 2pi*m; x5 = -pi/3 + 2pi*m