М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Осоаовлво
Осоаовлво
03.05.2022 17:06 •  Алгебра

Сократите дробь 6x^2-13x+5 6x^2-4x-10 при x=-1 если можете на листочке напишите и сфотайте плз

👇
Ответ:
AnTonDPR
AnTonDPR
03.05.2022
1) 6х^2 - 13х + 5 = 6( x - 1 2/3 )( x - 1/2 )
D = 169 - 120 = 49 = 7^2
X1 = ( 13 + 7 ) : 12 = 5/3 = 1 2/3
X2 = ( 13 - 7 ) : 12 = 1/2
2) 6x^2 - 4x - 10 = 6( x - 1 2/3 )( x + 1 )
D = 16 + 240 = 256 = 16^2
X1 = ( 4 + 16 ) : 12 = 5/3 = 1 2/3
X2 = ( 4 - 16 ) : 12 = - 1
3) сокращаем числитель и знаменатель дроби на 6( Х - 1 2/3 ), получили ( Х - 1/2 ) / ( Х + 1 )
4) Х = - 1
( - 1 - 1/2 ) / ( - 1 + 1 ) = 0
4,5(61 оценок)
Открыть все ответы
Ответ:
знания2345
знания2345
03.05.2022
a+b+c=180^\circ\Rightarrow c = 180^\circ - a - b\\\sin a + \sin b + \sin c = \sin a + \sin b + \sin(180^\circ-a-b)=\\=\sin a + \sin b + \sin(180^\circ)\cos(a+b)-\cos(180^\circ)\sin(a+b)=\\=\sin a + \sin b + \sin (a + b)=2\sin({a+b\over 2})\cos({a-b\over2})+\sin(a+b)=\\=2\sin({a+b\over2})(\cos({a-b\over2})+\cos({a+b\over2}))=4\sin({a+b\over2})\cos({a\over2})\cos({b\over2})
Нам достаточно найти максимум при некоторых значениях a_1,\,b_1, а минимум будет иметь то же по модулю значения, но обратный знак (если есть некоторое максимальное значение при a_1,\,b_1, то взяв -a_1,\,-b_1 мы получим, что синус поменяет знак на противоположный, а косинусы сохранят знак. Если же у минимума модуль больше, чем у максимума, то также поменяем знак и получим новый максимум)
Теперь осталось найти максимум.

\sin(a)+\sin(b)+\sin(c)=2\sin({a+b\over2})\cos({a-b\over2})+\sin c\leq\\\leq2\sin({a+b\over2})+\sin(c)=2\cos({c\over2})+\sin c
Найдем наибольшее значение функции f(x)=2\cos({x\over2})+\sin x:
f'(x)=-\sin({x\over2})+\cos x\\f'(x)\ \textless \ 0\Rightarrow 1-2\sin^2{x\over2}-\sin{x\over2}\ \textless \ 0\\\sin ({x\over2})=t,\,|t|\leq1\\2t^2+t-1\ \textgreater \ 0\\2(t-{1\over2})(t+1)\ \textgreater \ 0\\t\in({1\over2};1)\Rightarrow {x\over2}\in({\pi\over6}+2\pi k;{5\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in({\pi\over3}+4\pi k;{5\pi\over3}+4\pi k),\,k\in\mathbb{Z}
На полученном интервале f(x) убывает. Кроме того, f(x) имеет период 4π.
Таким же образом приходим к интервалу на котором f(x) возрастает (просто меняем знак неравенства):
|t|\leq1\\2(t-{1\over2})(t+1)\ \textless \ 0\\t\in(-1;{1\over2})\Rightarrow {x\over2}\in(-{7\pi\over6}+2\pi k;{\pi\over6}+2\pi k),\,k\in\mathbb{Z}\\x\in(-{7\pi\over3}+4\pi k;{\pi\over3}+4\pi k),\,k\in\mathbb{Z}
Значит достаточно проверить значение в точках 
x={\pi\over3}+4\pi k,k\in\mathbb{Z}
Как нетрудно убедится, в этих точках
f(x)={3\sqrt3\over2}
Таким образом,
\sin a+\sin b+\sin c\leq{3\sqrt3\over2}
Но при a=b=c=60^\circ достигается это значение.

Значит максимальное значение: {3\sqrt3\over2}
Минимальное: -{3\sqrt3\over2}
4,7(84 оценок)
Ответ:
liza2005yakovl
liza2005yakovl
03.05.2022
График этой функции - прямая.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось. Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

4,6(79 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ