Обозначим через x число правильно выполненных заданий, а через y - число неверно выполненных. Тогда по условию имеем следующее уравнение: 9x - 5y = 57 с дополнительным условием x+y ≤ 15. Из уравнения видно, что 9x-57 должно быть кратно 5. Поскольку 57 = 3*19, то 9x-57 = 3*3x - 3*19 = 3*(3x-19). Значит 3x-19 должно быть кратно 5. Это возможно при x = 8, в этом случае 3*8-19 = 24-19 = 5. Тогда 9*8-5y = 57. Отсюда 5y = 72-57 = 15 и y = 15/5 = 3. Условие x+y = 8+3 = 11 ≤ 15 соблюдается. Т. о. команда выполнила правильно 8 заданий.
ответ: 8 заданий.
1) Если принять за Х количество дней за которые планировалось изготовить все детали (изготавливая по 20 дет. в день), то количество деталей можно выразить как 20Х. Каждый день рабочий фактически делал не 20, а 20+8=28 деталей и изготовил (20Х+8) деталей за (Х-2) дня. Поэтому можно записать уравнением:
28(Х-2)=20Х+8
28Х-20Х=8+56
Х=64/8=8
Задание рабочий должен был выполнить за 8 дней (при этом изготовить 20*8=160 деталей, изготавливая по 28 дет. в день за 8-2=6 дней он сделал 28*6=168 деталей, т.е. на 8 больше).
2) Аналогичная задача: по 10 зад. в день нужно делать Х дней, всего задач будет 10Х. Если делать по 10+4=14 задач за Х-3 дня то нужно еще сделать 2 задачи, чтобы стало 10Х, уравнение принимает вид:
14(Х-3)+2=10Х
14Х-10Х=42-2
Х=40/4=10
Если решать 10 дней по 10 задач, то всего нужно решить 10*10=100 задач. (Если решать по 14 задач 10-3=7 дней, то останется решить 2 задачи: 14*7=98 зад., 100-98=2 зад.).
3) Если представить условно двузначное число в виде цифр (ав), то его можно математически выразить в форме а*10+в. Обратное выражение (ва) - это в*10+а. Известно, что соблюдаются два условия:
(а*10+в) - 54= в*10+а и а=3в, решаем данную систему уравнений, подставив второе выражение в первое.
3в*10+в-54=10в+3в
в=54/18=3
а=3в=3*3=9,
ответ: двузначное число - это 93