1) Переносим x из правой части уравнения в левую, изменив знак 2x < x + 7 x < 7 Например, можно подставить вместо х 5 или 3, они будут меньше 7. 2) 3x > 15 Делим обе части неравенства на 3 x > 5 3) -4 < -16 Скорее всего вы здесь пропустили х:) Скорее всего оно было рядом с -4 -4x < -16 Делим обе части неравенства на (-4) Заметь, что если мы делим на отрицательное число, то знак меняется на противоположный x > 4 3) 5x + 1 > 11 Переносим 1 в другую часть 5x > 10 Делим обе части неравенства на 5 x > 2 Например, решениями могут быть 3, 5, 10, т.к. они все больше двух
Для решения надо вспомнить два полезных наблюдения. I. Сумма иррационального и рационального чисел - иррациональное число. II. Произведение рационального числа, не равного нулю, на иррациональное число - иррациональное число. (Оба наблюдения доказываются от противного, в итоге придем к противоречию: в первом случае иррациональное слагаемое - разность двух рациональных чисел, во втором - иррациональный сомножитель представляется в виде частного рациональных чисел).
Решение. 1) a - 2b = (a + b) - 3b - иррационально как сумма рационального по условию числа a+b и иррационального по наблюдению II числа (-3)*b 2) a^2 - ab - 2b^2 = a^2 + ab - 2ab - 2b^2 = a(a + b) - 2b(a + b) = (a + b)(a - 2b) - иррационально как произведение рационального ненулевого по условию числа a+b и иррационального по доказанному числу a-2b.