1) y=3x^2-12x
0=3x^2-12x
3x^2-12x= 0
3x*(x-4)=0
x*(x-4) = 0
x=0
x-4=0
x=0
x=4
x1=0; x2=4
По графіку 1:
Корені (0;0) (4;0)
Область визначення x € R
Мінімум (2;-12)
Перетин з віссю ординат (0;0)
2) y=-2x³+5,2x
0=-2x³+5,2x
-2x³+5,2x= 0
-2x³+26/5x=0
-x*(2x²-26/5)=0
x*(2x²-26/5)=0
x=0
2x²-26/5=0
x=0
x=-√65/5
x=√65/5
x1=-√65/5; x2=0; x3=√65/5
x1≈-1,61245; x2=0; x3≈1,61245
По графіку 2:
Корені (-√65/5;0) (0;0)
(√65/5;0)
Область визначення x € R
Мінімум (-√195/15; -52√195/225
Максимум (√195/15; 52√195/225)
Перетин з віссю ординат (0;0)
3)y=-x²+6x-9
0=-x²+6x-9
0+x²-6x+9=0
(x-3)²=0
x-3=0
x=3
По графіку 3:
Корені (3;0)
Область визначення x € R
Максимум (3;0)
Перетин з віссю ординат (0;-9)
4)y=-x²-2,8x
0=-x²-2,8x
-x²-2,8x=0
-x²-14/5x=0
-x*(x+14/5)=0
x*(x+14/5)=0
x=0
x+14/5=0
x=0
x=-14/5
x1=-14/5 x2=0
x1=-2,8 x2=0
По графіку 4:
Корені (-14/5;0) (0;0)
Область визначення x € R
Максимум (-7/5; 49/25)
Перетин з віссю ординат (0;0)
Объяснение:
1.
a) √(x+1)=6 ОДЗ: х+1≥0 х≥-1 x×[-1;+∞).
(√(x+1))²=6²
x+1=36
x=35.
б) √(2-x²)=1 ОДЗ: 2-x²≥0 x²≤2 x∈[-√2;√2]
(√(2-x²))²=1²
2-x²=1
x²=1
x₁=-1 x₂=1.
2.
√(x+3)+(x+3)=6 ОДЗ: х+3≥0 х≥-3.
(x+3)+√(x+3)-6=0
Пусть √(x+3)=t≥0 ⇒
t²+t-6=0 D=25 √D=5
t₁=√(x+3)=2
(√(x+3))²=2²
x+3=4
x₁=1.
t₂=√(x+3)=-3 ∉
ответ: x=1.
3.
1-й вариант:
√(x²+2)+x²=0
√(x²+2)+x²+2-2=0
x²+2+√(x²+2)-2=0
Пусть √(x²+2)=t>0
t²+t-2=0 D=9 √D=3
t=√(x²+2)=1
(√x²+2)²=1²
x²+2=1
x²=-1 ∉
t=√(x²+2)=-2 ∉.
2-й вариант:
{√(x²+2)>0
{x²≥0 ⇒
√(x²+2)+x²>0
√(x²+2)+x²≠0
ответ: уравнение решения не имеет .