sin⁴(π/16) + sin⁴(3π/16) + sin⁴(5π/16) + sin⁴(7π/16) = (1 - cos(π/8))²/4 +
+ (1 - cos(3π/8))²/4 + (1 - cos(5π/8))²/4 + (1 - cos(7π/8))²/4 = (1/4) •
• ( 1 - 2cos(π/8) + cos²(π/8) + 1 - 2cos(3π/8) + cos²(3π/8) + 1 - 2cos(5π/8) + cos²(5π/8) + 1 - 2cos(7π/8) + cos²(7π/8) ) = (1/4) • ( 4 - 2•( cos(π/8) + cos(3π/8) + cos(5π/8) + cos(7π/8) ) + ( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) ) = (1/4) • ( 4 - 2•( 2•cos(π/2)•cos(-3π/8) + 2•cos(π/2)•cos(-π/8) ) + ( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) ) = 1 + (1/4)•( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) = 1 + (1/4)•( ( cos(π/8) + cos(7π/8) )² + ( cos(3π/8) + cos(5π/8) )² - 2•cos(π/8)•cos(7π/8) - 2•cos(3π/8)•cos(5π/8) ) =
= 1 - (1/4)•( cosπ + cos(-3π/4) + cosπ + cos(-π/4) ) = 1 - (1/4)•( - 2 - (√2/2) + (√2/2) ) = 1 - (1/4)•(-2) = 1 + 0,5 = 1,5
ответ: 1,5Координаты точки пересечения графика с осью Oy (0; 7)
Объяснение:
1)Постройте график функции y= −3,5x+7 и определите координаты точки пересечения графика с осью Oy
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х 0 2 4
у 7 0 -7
2)Чтобы определить координаты точки пересечения графика с осью Oy , нужно придать х значение 0, подставить это значение в уравнение и вычислить у:
х=0
y= −3,5x+7
у=0+7
у=7
Координаты точки пересечения графика с осью Oy (0; 7)
Відповідь:
1. 25 - 10x + x²
2. -9a² -16
3. (12 - a) (12 + a)
4. (z +3)(z +3)
5. (b - 2)(b - 2)
6. -26
Пояснення:
1. (5 - x)² = 25 - 10x + x²
2. (3a - 4)(4 + 3a) = 12a - 9a² - 16 - 12a = -9a² -16
3. 144 - a² = (12 - a) (12 + a)
4. 18 + 12z + 2z² = (z +3)(z +3)
5. 16 - 8b + b² = (b - 2)(b - 2)
6. 44 - 0,7 • (-10)² = 44 - 70 = -26
18 + 12z + 2z² = (z +3) (z +3)
2z² + 12z + 18 = 0
D = 144 - 4 * 18 * 2 = 144 - 144 = 0
z₁,₂ = (-12±0)/2*2 = -12/4 = -3
16 - 8b + b²
b² - 8b + 16 = 0
D = 64 - 4 * 1 * 16 = 64 - 64 =0
b₁,₂ = (8±0)/2*2 = 8/4 = 2
1,5
Объяснение: Решение :