М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bashkirovarima
bashkirovarima
16.12.2021 22:38 •  Алгебра

Впараллелограмме abcd диагонали ac и bd пересекаются под углом 30 градусов найдите площадь параллерограмма если ac=7 bd=8

👇
Ответ:
yong345
yong345
16.12.2021
ответ смотри в приложении
Впараллелограмме abcd диагонали ac и bd пересекаются под углом 30 градусов найдите площадь параллеро
4,5(36 оценок)
Открыть все ответы
Ответ:
steamoff
steamoff
16.12.2021

y=Π/3-x

sin x+cos(Π/3-x)=1

sin x+cos Π/3*cos x+sin Π/3*sin x=1

sin x*(1+√3/2)+cos x*1/2=1

Переходим к половинным аргументам и умножаем все на 2.

2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)

Переносимости все в одну сторону

3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0

Делим все на cos^2(x/2)

3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0

Замена t=tg(x/2)

3t^2-(4+2√3)*t+1=0

Получили обычное квадратное уравнение

D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3

t1=tg(x/2)=[2+√3-√(4+4√3)]/3

t2=tg(x/2)=[2+√3+√(4+4√3)]/3

Соответственно

x1=2*arctg(t1)+Π*n; y1=Π/3-x1

x2=2*arctg(t2)+Π*n; y2=Π/3-x2

4,7(84 оценок)
Ответ:
Abdua245
Abdua245
16.12.2021

Если нужно найти периметр прямоугольника, решение будет таково: Известен катет треугольника и то что гипотенуза больше на 3 см другого катета. По теореме Пифагора можем найти и гипотенузу и катет. A^2+B^2=C^2 9^2+X^2= (X+3)^2 - здесь Х это неизвестный катет. 81+Х^2= X^2+6X+9 - Открыли скобки по известной формуле бинома . Переносим нужные члены и получаем: 81-9-6Х=Х^2-X^2=0 72-6x=0 72=6x x=12 Получили что катет равняется 12, а гипотенуза 12+3=15 Ищем периметр прямоугольника: 2(9+12)=18+24=42

Подробнее – на Otvet.Ws – https://otvet.ws/questions/9573791-pozhaluista-srochno-nadooo-odin-iz-katetov-pryamougolnogo.html

4,6(66 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ