Из неравенств 1) 2x> 70: 2)x< 100; 3) 4x> 25; 4)x> 10; 5) х> 5 два верных и три неверных какие два неравенства верны? (a) 1 и 3 (б)2 и 3 (в) 2 и 4 (г) 4 и 5 (д) 2 и 5
Алгоритм (решения линейных уравнений) Раскрыть скобки в каждой части уравнения (если нужно). Неизвестные собрать в левой части уравнения, известные в правой части уравнения. ( При переносе слагаемых из одной части уравнения в другую знак «+» меняем на “ –“, а знак “ – “ на «+».) В каждой части уравнения приведи подобные слагаемые. Неизвестное найди, как неизвестный множитель ( произведение подели на известный множитель). Алгоритм. Решение линейных неравенств. Раскрыть скобки (если нужно). Неизвестные перенести в левую часть неравенства, известные в правую часть. ( При переносе знаки перед слагаемыми изменить на противоположные “-“ на “+“; “+“ на “-“; знак неравенства сохраняется). В каждой части привести подобные слагаемые, получаем неравенство вида: ax < b или ax > b или ax £ b или ax ³ b. Чтобы найти x, число (b) стоящие в правой части разделить на коэффициент при x (a), причём, если a>o, то знак неравенства сохраняется, если a<0, то знак меняется на противоположный ( “<” на “>”; “>” на “<”; “£” на “³”; “³” на “£”). Решение изобразить на числовой прямой и ответ записать промежутком.
1)а) у=х³+2. Все ординаты графика у = х³ увеличиваются на 2 Это параллельный перенос у=х³ вверх на 2 единицы (клеточки) Считаем точку (0;2) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) б)у=х³-1 Все ординаты графика у = х³ уменьшаются на 1 Это параллельный перенос у=х³ вниз на 1 единицу (клеточку) Считаем точку (0;-1) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) в) у=(х-1)³ В точке х =1 график этой функции ведет себя так же как у=х³ в начале координат (0;0)
Считаем точку (1;0) за начало координат и от неё Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х³) Уходим вправо на2 клеточки и вверх на 8 ( это как точка (2;8) у параболы у=х³) Уходим влево на1 клеточку и вниз на одну ( это как точка (-1;-1) у параболы у = х³) Уходим влево на2 клеточки и вниз на 8 ( это как точка (-2;-8) у параболы у=х³) 2)Выделим полный квадрат. х²-6х+5=(х²-2·х·3+3²-3²)+5=(х²-6х+9)-9+5=(х-3)²-4 Координата вершины параболы у= 5-6х+х² в точке (3;-4) Считая ее за начало координат строим параболу у=х² Уходим вправо на1 клеточку и вверх на одну ( это как точка (1;1) у параболы у = х²) Уходим вправо на2 клеточки и вверх на 4 ( это как точка (2;4) у параболы у=х²) Уходим влево на1 клеточку и вверх на одну ( это как точка (-1;1) у параболы у = х²) Уходим влево на2 клеточки и вверх на 4 ( это как точка (-2;4) у параболы у=х²)
1) 2x>70
x>35
2)x<100
3) 4x>25
х>6.25
4) x>10
5) х>5
1. Предположим x>35 ⇒
х >10 - верно
х > 6.25 - верно
х> 5 - верно
НЕ ПОДХОДИТ
2. х<100
Тут лучше пойти от обратного, поскольку если х≥100, все остальные нераенства будут неверными
ВЕРНОЕ НЕРАВЕНСТВО
3. Предположим x>6.25
х>5 - верное.
х<100- верное
3 правильных неравенства
НЕ ПОДХОДИТ
4. Предположим х>10
x<100 - верное
х>35 верное
Опять 3 верных
НЕ ПОДХОДИТ
5. Предположим х>5
x<100 верное
х>6.25 неверное
х>10 неверное
х>6.25 неверное
ЗНАЧИТ ВСЕГО 2 ВЕРНЫХ НЕРАВЕНСТВА
ответ (Д) 2 и 5