1) Шаблон y=x²
Вершина в точке (2;-3)
Нули функции
(x-2)²-3=0 ⇒
(x-2)²=3
x-2= -√3 или х-2=√3
х=2-√3 или х=2+√3
2) Шаблон y=x²
Вершина в точке (-2;-1)
Нули функции
(x+2)²-1=0 ⇒
(x+2)²=1
x+2= -1 или х+2=1
х=-3 или х=-1
3) Шаблон y=x²
Вершина в точке (2,5;-3,4)
Нули функции
(x-2,5)²-3,4=0 ⇒
(x-2,5)²=3,4
x-2,5= -√3,4 или x-2,5=√3,4
х= 2,5 -√3,4 или х=2,5 +√3,4
4)Шаблон y= - x²
Вершина в точке (1;4)
Нули функции
-(x-1)²+4=0 ⇒
(x-1)²=4
x-1= -2 или x-1=2
х= -1 или х=3
5)Шаблон y= - x²
Вершина в точке (-3;-3)
Нули функции
-(x+3)²-3=0 ⇒
(x+3)²=-3
уравнение не имеет корней.
Парабола не пересекает ось Ох
6)Шаблон y= - x²
Вершина в точке (3,2;2,4)
Нули функции
-(x-3,2)²+2,4=0 ⇒
(x-3,2)²=2,4
x-3,2= - √2,4 или x-3,2= √2,4
x= 3,2 - √2,4 или x = 3,2+ √2,4
Числитель - сворачивается в квадрат разности, знаменатель - это разность квадратов.
Сворачивая по формуле квадрата разности числитель, и наоборот расписывая по разности квадратов знаменатель получаем вышесказаное выражение, далее, выносим минус за скобки, и в одной из скобок знаменателя меняем знак на противоположный, тем самым имеем право сократить с числителем. Далее, минус вносим в дробь, меняя знаки в числителе. Выходим на ответ.
Либо есть более короткий вариант решения, но тут нужна внимательность:
Т.к. это квадрат разности (В числителе) имеем право поменять местами 36c^2 и 25, сохраняя знаки. Свернется в тот-же самый квадрат разности, но нет заморочек с минусом.
Дано:
b1=9
b2=3
Найти: b5 ?
bn=b1*q^(n-1)
q=b2/b1=3/9=1/3
b5=9*(1/3)^(5-1)=9*(1/3)^4=9*1/81=1/9
ответ: b5=1/9