-√14; -3(1); 3,147.
Объяснение:
В данном примере трудность для сравнения представляют только 2 числа: -√14 и -3(1). Какое из них меньше?
Если мы точно не знаем, чему равен √14, то можно сравнить его с ближайшими квадратами чисел, которые мы знаем или легко можем рассчитать.
Ближайшие - это 3^2 = 9 и 4^2 = 16.
14 лежит в интервале от 9 до 16, но 5 единицах от 9 и всего в 2-х единицах от 16, - значит, √14 значительно больше половины интервала числе от 3 до 4, которые возводили в квадрат, т.е. √14 > 3,5.
Можем проверить: 3,5^2 = 12,25, а у нас 14.
Делаем вывод: - √14 на числовой оси лежит левее (то есть меньше) -3(1).
Таким образом, в порядке возрастания числа располагаются в следующем порядке:
-√14; -3(1); 3,147.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
количество отобранных отличников на всех кого отобрали и отличников