М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ruslan2284612
Ruslan2284612
13.07.2022 16:28 •  Алгебра

Вмагазине стоят два платёжных автомата.каждый из них может быть неисправен с вероятностью 0,05.найдите вероятность того,что хотя бы один из автоматов исправен.

👇
Ответ:
SofiAll
SofiAll
13.07.2022
Р (вероятность всех событий)= 1
Р(вероятность того, что каждый из автоматов может быть неисправен) = 0,05.

1) Найдем вероятность того, что два платёжных автомата являются нерабочими, с произведения вероятности одного события (при условии,что оно произошло) на условную вероятность второго:
Р(два неисправных)=0,05*0,05= 0,0025
2) Вероятность того, что хотя бы один из автоматов будет в рабочем состоянии равна:
Р(один исправен)=Р(всех событий)-Р(два неисправных) =
1-0,0025 = 0,9975=99,75%
ответ: вероятность того,что хотя бы один из автоматов исправен, равна 0,9975
4,7(50 оценок)
Открыть все ответы
Ответ:
Bandurustka26
Bandurustka26
13.07.2022

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

4,4(62 оценок)
Ответ:
zifu
zifu
13.07.2022

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

4,6(32 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ