С правой части у обоих уравнений -1, следовательно их можно приравнять. x^2+3xy-8y^2=x^2-xy-4y^2 перенесём всё влево: x^2+3xy-8y^2-x^2+xy+4y^2=0 x^2 сокращается; остаётся: 3xy+xy-8y^2+4y^2=0 4xy-4y^2=0 4y можно вынести: 4y(x-y)=0 То есть 4y=0, следовательно y=0 И x-y=0, следовательно x=y теперь подставляем эти "ответы в первое или второе уравнение (неважно) Сначала вместо y будем ставить 0: x^2+3x*0-8*0^2=-1 x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число) Теперь вместо y будем подставлять x (x=y) x^2+3x^2-8x^2=-1 -4x^2=-1 x^2=1/4 x1=1/2 и y1=1/2 x2=-1/2 и y2=-1/2 ответ: (1/2;1/2) и (-1/2;-1/2)
У нас есть функция: Точки пересечения с нулем, достаточно просто найти: Экстремумы: Прикинув график, мы примерно понимаем, что 0 это ноль и экстремум, одновременно, а между 0 и 3, также есть экстремум в двух(Это можно было бы и утверждать по теореме Ролля) А теперь добавим наш параметр а, т.к. а это конкретное число, это никак не влияет на график по правилу элементарных преобразований, она либо опускать его будешь вниз, либо поднимать вверх. Т.к. а отрицательно, то график будет подниматься(перед а, знак минус) Нужно найти такое а, при котором второй экстремум будет обращаться в ноль, который (2). Составим уравнение: 8-3*4-a=0; -4-a=0; a = -4. Получаем, что ровно два корня, при: