В решении.
Объяснение:
Формула координат вершины параболы:
х₀ = -b/2a
y₀ = (4ac - b²)/4a, или просто подставить вычисленное значение х₀ в уравнение функции и вычислить значение у₀.
1) у = х² -10х + 20
х₀ = -b/2a
х₀ = 10/2
х₀ = 5;
у₀ = 5² - 10*5 + 20 = 25 - 50 + 20 = -5.
Координаты вершины параболы (5; -5). Ветви вверх.
2) y = -x² + 3x - 4
х₀ = -b/2a
х₀ = -3/-2
х₀ = 1,5;
у₀ = -(1,5)² + 3*1,5 - 4 = -2,25 + 4,5 - 4 = -1,75.
Координаты вершины параболы (1,5; -1,75). Ветви вниз.
3) у= -х² + 6х - 7
х₀ = -b/2a
х₀ = -6/-2
х₀ = 3;
у₀ = -(3)² + 6*3 - 7 = -9 + 18 - 7 = 2.
Координаты вершины параболы (3; 2). Ветви вниз.
4) у = 3х² - 6х + 1
х₀ = -b/2a
х₀ = 6/6
х₀ = 1;
у₀ = 3*1² - 6*1 + 1 = 3 - 6 + 1 = -2.
Координаты вершины параболы (1; -2). Ветви вверх.
5) у = -0,2х² + 4х
х₀ = -b/2a
х₀ = -4/-0,4
х₀ = 10;
у₀ = -0,2*10² + 4*10 = -0,2*100 + 40 = -20 + 40 = 20.
Координаты вершины параболы (10; 20). Ветви вниз.
8
Объяснение:
(y²-4y+4)/(y²-4) : (10y-20)/(y²+2y)= при y=80
В числителе первой дроби развёрнут квадрат разности, свернуть, в знаменателе разность квадратов, развернуть.
В числителе второй дроби вынести 10 за скобки, в знаменателе вынести у за скобки:
=(у-2)²/[(y-2)(у+2)] : [10(y-2)]/[y(y+2)]=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой умножить на числитель второй.
=[(у-2)(у-2)*y(y+2)] : [(y-2)(x+2)*10(y-2)]=
сокращение (у-2) и (у-2) на (у-2) 2 раза, (у+2) и (у+2) на (у+2):
=у/10=80/10=8