7x²-x-8=0
Сначала решим уравнение через дискриминант.
D=b²-4ac
В данном уравнении: a=7; b=-1; c=-8. Подставляем.
D=(-1)²-4*7*(-8)=1+224=225=15²
Найдём корни по формуле
x=(-b±√D):2a=(-(-1)±15):2*7=(1±15):14
Получаем
x₁=(1-15):14=-14:14=-1
x₂=(1+15):14=16/14=8/7=1 1/7
Есть такая формула для разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂)
Нам известны корни, подставим их, а также значение A.
7(x+1)(x-1 1/7)
Внесём 7 во вторую скобку, чтобы избавиться от дроби.
7(x+1)(x-8/7)=(x+1)(7x-8)
ответ: 7x²-x-8=(x+1)(7x-8)
7x²-x-8=0
Сначала решим уравнение через дискриминант.
D=b²-4ac
В данном уравнении: a=7; b=-1; c=-8. Подставляем.
D=(-1)²-4*7*(-8)=1+224=225=15²
Найдём корни по формуле
x=(-b±√D):2a=(-(-1)±15):2*7=(1±15):14
Получаем
x₁=(1-15):14=-14:14=-1
x₂=(1+15):14=16/14=8/7=1 1/7
Есть такая формула для разложения квадратного трёхчлена на множители: ax²+bx+c=a(x-x₁)(x-x₂)
Нам известны корни, подставим их, а также значение A.
7(x+1)(x-1 1/7)
Внесём 7 во вторую скобку, чтобы избавиться от дроби.
7(x+1)(x-8/7)=(x+1)(7x-8)
ответ: 7x²-x-8=(x+1)(7x-8)
ax²+bx+c раскладывается на множители по правилу
ax²+bx+c=a(x-x₁)(x-x₂)
х₁ и х₂- корни квадратного уравнения ax²+bx+c=0
D=b²-4ac>0
-x²-7x-12=0
x²+7x+12=0
D=49-48
x=(7-1)/2=3 или х=(7+1)/2=4
х²+7х+12=(х-3)(х-4)
-х²-7х-12=(3-х)(х-4)
4x²-20x+25=0
D=400-4·4·25=400-400=0
x=(20-0)/8=5/2
4x²-20x+25=4·(x-2,5)²=(2x-5)²
x²+x-2=0
D=1+8=9
x=(-1-3)/2=-2; x=(-1+3)/2=1
x²+x-2=(x+2)(x-1)