М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sharonova71
sharonova71
03.08.2020 20:51 •  Алгебра

Решить. дифференциальное уравнение первого порядка. найти частное решение уравнения. х*у'=x*(e^y/x)+у, если у(1)=0

👇
Ответ:
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{-\frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.

ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1
4,6(61 оценок)
Открыть все ответы
Ответ:
istomina2000
istomina2000
03.08.2020

Объяснение:

Папа подарил Вите замечательный ножик. Чего только не предлагали ребята ему в обмен на ножик! Но Витя и слушать не хотел.

Ножик был очень красивый. Он имел много предметов. Два острых лезвия,

которыми можно было заточить карандаш, резать хлеб и овощи, легко срезать ветки. Снабжён ножницами, вилкой и ложкой. Было тут и шило и даже удобная пилка, которой можно перепилить небольшие металлические прутки. Такой ножик необходимая вещь в лесу, в походе и в дороге.

В школе Витя увидел в руках Петьки снегиря, к лапке которого была привязана нитка. Петька то отпустить снегиря, то опять притянет к себе. Снегирь взмахивал крыльями, пытаясь улететь, но нитка удерживала бедную птичку. Снегирь был так измучен, что всё слабей и слабей делал попытки улететь от мучителя. От усталости его головка вяло склонялась на бок, а глаза закрывались. А Петька весело наслаждался измученой птичкой.

У Вити сжалось сердце, при виде таких издевательств. Он решил снегиря. Предлагал Петьке разные игрушки, вещички, но Петька ни на что не соглашался. Тогда Витя решился на самое дорогое, что у него было. Он предложил, подаренный ему ножик. Петька осмотрел нож, подумал и согласился на обмен.

Витя отдал Петьке ножик, и обмен состоялся. Витя снял нитку с лапки птицы, взлез на подоконник и открыл форточку. Поднёс к форточке руку с измученным снегирём. Птичка почувствовала свежую струю воздуха. Головка поднялась на встречу свободе. Крылышки его расправились. На какое то мгновение снегирь замер, как бы выражая благодарность своему Потом маленькое тельце птички встрепенулось в прыжке. Он взмахнул крыльями и радостно взмыл на свободу.

Витя восторженно посмотрел в след улетающей птичке. О ножике, подаренном ему отцом, Витя ни чуть не жалелк

4,8(72 оценок)
Ответ:
1234567890824
1234567890824
03.08.2020
Примем всю работу за 1.пусть m дней надо первой бригаде для посадки школьного сада,тогда ( m - 3) дней надо второй бригаде,1/m - часть работы, которую выполняет первая бригада за 1 день,1/m - 3 - часть работы. которую выполняет вторая бригада за 1 день.                                  ответ: первой бригаде понадобилось бы 6 дней на                              посадку сада, второй бригаде 3 дня.
4,5(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ