М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lol11111111000
Lol11111111000
09.11.2021 15:40 •  Алгебра

Сколько решений уравнения 8sinx+7cos(x+π6)=57−−√8sin⁡x+7cos⁡(x+π6)=57 принадлежит промежутку [13π,2017π)[13π,2017π)?

👇
Ответ:
Аня79780607646
Аня79780607646
09.11.2021
1.
8*sin(x) + 7*cos(6*I*p + x) = 2*\/ 2 *\/ sin(x) + 7*cos(6*I*p + x) + 57 / / \\ / / \\
 | |115 \/ 229 || | |115 \/ 229 ||
x1 = I*im|asin|--- +|| + re|asin|--- +| | 
 \ \ 16 16 // \ \ 16 16 // дано уравнение 
8 \sin{\left (x \right )} + 7 \cos{\left (6 i p + x \right )} = 2 \sqrt{2} \sqrt{\sin{\left (x \right )}} + 7 \cos{\left (6 i p + x \right )} + 57$$
преобразуем
- 2 \sqrt{2} \sqrt{\sin{\left (x \right )}} - 7 \cos{\left (6 i p + x \right )} - 57 + 8 \sin{\left (x \right )} + 7 \cos{\left (6 i p + x \right )} = 0 
сделаем замену 
w = \sin{\left (6 i p + x \right )}
- 2 \sqrt{2} \sqrt{w} = - 8 w + 57
возведём обе части уравнения в (0) 2-ую степень
8 w = \left(- 8 w + 57 \right)^{2}
8 w = 64 w^{2} - 912 w + 3249
перенесём правую часть уравнения в левую со знаком минус 
- 64 w^{2} + 920 w + 3249 = 0 
это уравнение вида 
a*w^2 + b*w + c = 0 
квадратное уравнение можно решить с дискриминанта.
корни квадратного уравнения:
w_{1} = \frac{\sqrt{D} - b}{2 a} 
w_{2} = \frac{- \sqrt{D} - b}{2 a}
где D = b^2 - 4*a*c - это дискриминант
т.к.
a = - 64
b = 920
c = - 3249
,то
D = b^2 - 4*a*c = (920)^2 - 4 * (-64) * (-3249) = 14656 
т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)

или
w_{1} = - \frac{\sqrt{229}}{16} + \frac{115}{16}
w_{2} = \frac{\sqrt{229}}{16} + \frac{115}{16}

т.к.
\sqrt{w} = 2 \sqrt{2} w - \frac{57 \sqrt{2}}{4}
и
\sqrt{w} \geq 0 
то
 ___
 57*\/ 2 ___
- + 2*w*\/ 2 >= 0
 4

или
$$\frac{57}{8} \led w$$
$$w < \infty$$
тогда, окончательный ответ:
$$w_{2} = \frac{\sqrt{229}}{16} + \frac{115}{16}$$
делаем обратную замену 
$$\sin{\left (x \right )} = w$$
дано уравнение
$$\sin{\left (x \right )} = w$$
это простейшее тригонометрическое уравнение 
это уравнение преобразуется в 
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n - \operatorname{asin}{\left (w \right )} + \pi$$
или 
$$x = 2 \pi n + \operatorname{asin}{\left (w \right )}$$
$$x = 2 \pi n - \operatorname{asin}{\left (w \right )} + \pi$$
, где n-любое целое число 
подставляем w:
x_{1} = 2 \pi n + \operatorname{asin}{\left (w_{1} \right )}$$

x_{1} = 2 \pi n + \operatorname{asin}{\left (\frac{\sqrt{229}}{16} + \frac{\sqrt{115}{16} \right )}
x_{1} = 2 \pi n + \operatorname{asin}{\left (\frac{\sqrt{229}}{16} + \frac{\sqrt{115}{16} \right )}
x_{2} = 2 \pi n - \operatorname{asin}{\left (w_{1} \right )} + \pi
x_{2} = 2 \pi n + \pi - \operatorname{asin}{\left (\frac{\sqrt{229}}{16} + \frac{\sqrt{115}{16} \right )}
x_{2} = 2 \pi n + \pi - \operatorname{asin}{\left (\frac{\sqrt{229}}{16} + \frac{\sqrt{115}{16} \right )} 
4,6(39 оценок)
Открыть все ответы
Ответ:
yuraseven77
yuraseven77
09.11.2021

Если ещё не изучено понятие производной, то решение может быть таким:

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

4,8(48 оценок)
Ответ:
namik147258369
namik147258369
09.11.2021

Объяснение:

х км/ч - скорость катера в стоячей воде;

(x-2) км/ч - скорость катера против течения;

(x+2) км/ч - скорость катера по течению;

20/(x+2) ч - время, пройденное по течению;

8/(x-2) ч - время, пройденное против течения.

На весь путь катер затратил 2 часа, составим уравнение

\dfrac{20}{x+2}+\dfrac{8}{x-2}=2

Домножив обе части уравнения на 0.5(x+2)(x-2), получаем

10(x-2) + 4(x+2) = (x+2)(x-2)

10x - 20 + 4x + 8 = x² - 4

x² - 14x + 8 = 0

D = 14² - 4 * 1 * 8 = 164

x_{1,2}=7\pm\sqrt{41}

Корень x=7-\sqrt{41} не удовлетворяет условию.

x=7+\sqrt{41} - скорость катера в стоячей воде, что странный корень вышел(

4,5(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ