М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vlodimirfrolov
vlodimirfrolov
20.12.2022 16:18 •  Алгебра

Произведение разности двух чисел на их сумму равно (a−d)⋅(a+d)= продолжи (выбери правильный ответ). квадратов этих чисел квадрату суммы двух чисел первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа. первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. разности этих чисел и их суммы квадрату разности двух чисел

👇
Ответ:
TASHER228YMMlol
TASHER228YMMlol
20.12.2022
Разности квадратов этих чисел:
(a+b)(a-b)=a^2-b^2
4,7(24 оценок)
Ответ:
duy53519
duy53519
20.12.2022
Разности квадратов  этих чисел. ответ: цифра 1.
4,7(17 оценок)
Открыть все ответы
Ответ:
babikahenjudzao
babikahenjudzao
20.12.2022

На фотографии.

Объяснение:

Тут ситуация весьма неоднозначна. Тут будет аж две фигуры ограниченных этими графиками и осью Ox. Я нашёл и первую и вторую, какую вам выбрать и предоставить преподавателю, решать вам ;) ответ в обоих случаях получился примерным, потому что графики пересекаются не в целой точке. Решение для нахождения первой фигуры я обозначил римской цифрой 1, а второй - 2.

P.S. Я не понимаю, зачем преподаватели задают такие задания.

Вот, надеюсь, правильно. Желаю удачи.

P.P.S Сейчас я понял, что этих фигур ещё оказывается 3

0_0 Но, я думаю 2 будет достаточно :) Задание - найти ФИГУРУ. По идее, одну.

4,4(59 оценок)
Ответ:
PolinaRyan
PolinaRyan
20.12.2022
1)
f(x) - функция, графиком которой является парабола ветвями вниз, пересекающая ось Ох в двух точках. Значит, ее площадь фигуры, отсекаемой от параболы осью Ох, нужно рассчитывать как определенный интеграл этой функции от а до b, где а и b - точки, в которых f(x) обращается в нуль, т.е. корни уравнения 6+x-x^2=0. Найдем дискриминант D=1+24=25 и решим уравнение: 
x=(-1 плюс-минус 5)/(-2); х₁=-2; х₂=3. Итак, найдем площадь:
S= \int\limits^3_{-2} {(6+x-x^2)} \, dx =6x+ \frac{1}{2} x^2- \frac{1}{3} x^3|^3_-_2= \\ =(6*3+\frac{1}{2}* 3^2-\frac{1}{3}*3^3 )-(6*(-2)+\frac{1}{2}* 2^2-\frac{1}{3}*(-2)^3 )= \\ =18+4,5-9-(-12+2+ \frac{8}{3} )=18+4,5-9+12-2- \frac{8}{3}=20 \frac{5}{6} 


2)
а)
Сначала найдем точки пересечения графиков указанных функций, для чего решим уравнение 
x^2-x=3x;
 \\ x^2-4x=0; \\ 
x(x-4)=0; \\ 
x_1=0; x_2 =4
Площадь, которую мы должны найти, равняется модулю разности опред. интеграла функции у=х^2-х с пределами в точках 0 и 4 и площади треугольника, образованного прямой у=3х, осью абсцисс и прямой х=4. Катеты этого треугольника равны 4 и 12 (т.к. 4-0=4 и 3*4=12), значит площадь его равна 4*12/2=4*6=24. Найдем интеграл и вычтем из него 24.

\int\limits^4_0 {(x^2-x)} \, dx = \frac{1}{3} x^3- \frac{1}{2} x^2|^4_0=\frac{1}{3} *4^3- \frac{1}{2} *4^2-(\frac{1}{3}* 0^3- \frac{1}{2} *0^2)= \\ = \frac{64}{3} -8=21 \frac{1}{3} -8=13\frac{1}{3} \\ \\ |13\frac{1}{3} -24|=10\frac{2}{3} 

б)
4,5(51 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ