Для решения нужно вспомнить. что:
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Поэтому h²=9·16=144
h=12
Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты:
1)9²+12²=225
√225=15
2)16²+12²=400
√400=20
Катеты равны 15см и 20 см,
гипотенуза 9+16=25 см
Можно применить для решения другую теорему.
Катет прямоугольного треугольника есть среднее пропорциональное между
гипотенузой и проекцией этого катета на гипотенузу.
Найдем гипотенузу:
9+16=25 см
Пусть меньший катет будет х.
Тогда его проекция - 9см:
х²= 9·25=225
х=15 см
Больший катет пусть будет у:
у²=25·16=400
у=20 см
Объяснение:
вот так ка то)
(-∞; -3)∪(1; 10)
Объяснение:
Решаем неравенство
(x+3)·(x-1)·(x-10)<0
методом интервалов:
1) Определим нули левой части неравенства, то ест решаем уравнение (x+3)·(x-1)·(x-10)=0:
x+3=0 ⇔ x = -3
x-1=0 ⇔ x = 1
x-10=0 ⇔ x = 10
2) Нули левой части делит ось Ох на следующие промежутки, в которых знак выражения (x+3)(x-1)(x-10) не меняется:
(-∞; -3), (-3; 1), (1; 10), (10; +∞).
3) Определим знаки выражения в каждом промежутке:
а) x∈(-∞; -3): (x+3)·(x-1)·(x-10)<0, например при x= -100:
(-5+3)·(-5-1)·(-5-10)= -180<0;
б) x∈(-3; 1): (x+3)·(x-1)·(x-10)>0, например при x= 0:
(0+3)(0-1)(0-10)=30>0;
в) x∈(1; 10): (x+3)·(x-1)·(x-10)<0, например при x= 2:
(2+3)·(2-1)·(2-10)= -40<0;
г) x∈(10; +∞): (x+3)·(x-1)·(x-10)>0, например при x= 11:
(11+3)·(11-1)·(11-10)= 140>0;
4) Решением неравенства будет множество:
(-∞; -3)∪(1; 10).