X(t) = t² - 3t, tо = 4
Среднюю скорость движения на указанном отрезке времени;
Средняя скорость движения определим по формуле
Vcp= /frac{/Delta x}{/Delta t}
Δx=X(4)-X(0)=4²-3*4-0=16-12=4
Δt=4
Vcp= /frac{4}{4} =1
Скорость и ускорение в момент времени tо=4
Скорость точки в момент времени t определяется через производную перемещения
V(t) = X(t) =(t²-3t)=(t²)-(3t)=2t-3
V(4)=2*4-3=5
Ускорение точки в момент времени t определяется через производную скорости
а(t) =V(t)=(2t-3)=2
Моменты остановки
В момент остановки скорость равна нулю
V(t) = 0
2t - 3 = 0
2t = 3
t = 1,5
продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
В противоположном направлении так как знак скорости изменился на противоположный.
Наибольшую скорость движения на указанном отрезке времени.
Скорость движения на концах отрезка времени
V(0) = 2*0 - 3 = -3
V(4) = 2*4 - 3 = 8 - 3 = 5
Найдем производную(ускорение) функции скорости от времени
V(t) = (2t - 3) = 2
Постоянная величина производной (ускорения) говорит о том что движение равноускоренное и максимум и минимум скорости находится на концах отрезка.
Поэтому максимальноя скорость на отрезке находится в момент времени t = 4 и равна Vmax = V(4) = 5
ответ: функция z имеет минимум, равный 2, в точке М(1;1).
Объяснение:
Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:
-1/x²+a=0
-1/y²+a=0
a*(x+y-2)=0
Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.
(x-3)² - √5 * (x-3) =0
(х-3) *(х-3 -√5) =0
х-3=0 или (х-3 -√5) =0
х1=3 х2 = 3 +√5