1. 32
2. 3
3. x1= -4 x2=-2
4 А-2 B-1 C-3
5 x равно-больше 2,9 или 29/10
6.Возьмём за x - скорость по шоссе. Тогда время его ходьбы по шоссе равен 5/x. Так скорость по лесу на 3 км меньше, то можно записать её как x-3. Тогда время ходьбы по лесу равен 6/(x-3). Всего они шли 240 минут. Получим уравнение:
5/x + 6/(x-3)=240
Приведём к общему знаменателю.
5(x-3) + 6x = 4(x^2 - 3x)
5x - 15 + 6x =4x^2 - 12x
11x - 15 =4x^2 - 12x
4x^2 - 23x + 15=0
D= (-23)^2 - 4 * 4 * 15 = 529 -240=289
x1= (23 + 17)/2*4=5 - подходит
x2= (23-17)/2*4 = 0.75 - не подходит
След-но, скорость пешехода по шоссе - 5км/ч, а по лесу - 2км/ч
Объяснение:
Какой набор точек представляет собой уравнение:
а) 9x² + 9y² - 12x - 6y - 76 = 0
б) x² + y² - 18x + 40y + 481 = 0 ;
в) x² + y² + 2x - 6y + 15 = 0 || x² + y + 2x - 6y + 15 = 0
* * * * * * * * * * * * * * * * * * * * * * * * * *
Решение
а)
9x² + 9y² - 12x - 6y - 76 = 0 ⇔ (9x²- 12x +4) + ( 9y² - 6y+ 1 ) - 4 - 1 - 76 = 0 ⇔ (3x -2)²+(3y -1)² =81 ⇔ 9(x -2/3)² +9(y -1/3 )² =81 ⇔(x -2/3)² +(y -1/3 )² =3²
Точки на окружности с центром O ( 2/3 ; 1/3 ) и радиусом R = 3 .
б)
x² + y² - 18x + 40y + 481 = 0 ⇔(x² - 18x + 81) + (y² + 40y + 400) =0⇔
(x - 9)² + ( y + 20)² = 0 возможно, если только x - 9 =0 и y = - 20
* * * (x - 9)² ≥ 0 и ( y + 20)² ≥ 0 * * *
ответ : единственная точка : E( 9 ; - 20) .
в)
x² + y² + 2x - 6y + 15 = 0 ⇔ ( x² + 2x + 1 ) + ( y² - 6y + 9 ) +5 = 0 ⇔
(x + 1 )² + ( y - 3 )²+ 5 = 0 невозможно т.к. (x + 1 )² ≥0 и ( y - 3 )² ≥ 0
(x + 1 )² + ( y - 3 )²+ 5 ≥ 5
(x + 1 )² + ( y - 3 )²+ 5
ответ: ∅
положительно и правая часть равенства (2) опять имеет тот же знак,
что и коэффициент а.
Осталось рассмотреть, какрй знак имеет трехчлен при лг, лежащем
внутри промежутка между корнями.
Пусть X i< ^ x< ^ x ^ В этом случае лг — х г^>0, а лг — лг2< 0 .
Произведение (лг — х±)(х — х%) отрицательно, и правая часть равенства
(2) имеет знак, противоположный знаку коэффициента а.
Доказанная теорема имеет следующий геометрический смысл. Если
дискриминант квадратного трехчлена положителен,, график его пересекает
ось Олт в двух точках. Если при этом старший коэффициент
трехчлена положителен, график .трехчлена, за исключением дуги, отсекаемой
осью Ох, находится в верхней полуплоскости. Если же
старший коэффициент трехчлена отрицателен, график его, за исключением
дуги, отсекаемой осью Ох, находится в нижней полуплоскости