Все очень просто, двойку представляем как log3(3^2); Т.к. с двух сторон логарфимы с одинаковым основанием мы имеем право "отбросить" их. Далее - обычная арифметика.
Можно сделать проверку, на правильность нахождения корня. (С более сложными уравнениями она понадобится, ибо бывают "ложные" корни, при которых не выполняется равенство уравнения).
Подставляем значение 12 вместо икса:
log3(12-3)=2;
log3(9)=2;
log3(3)^2=2;
Согласно вышесказанной формуле, получаем:
2=2.
Корень найден нами верно. (Хотя другого варианта и не могло быть в данном уравнении).
ответ: x=12.
y⁾=⁽√( 2x-4) )⁾= = =
2 √( 2x-4) 2 √( 2x-4) √( 2x-4)
y⁾=((x+2)⁴)⁾=4*(x+2)³ *(x+1)⁾= 4*(x+2)³