М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mabmbj
Mabmbj
01.01.2021 12:24 •  Алгебра

1)найти сумму первых семнадцати членов арифметической прогрессии, если а4 = -4; а17= -17. 2)найти четвертый член прогрессии, для которой знаменатель q = 2, а s4 = 45. 3) сколько членов надо взять в арифметической прогрессии 4; 8; ….; чтобы их сумма равнялась 112

👇
Ответ:
mrfurkan
mrfurkan
01.01.2021
А4 = -4, а17 = -17.
а17 = а4 + 13д
д = а17 - а4 / 13 = -17 - (-4) / 13 = -13 / 13 = -1
а4 = а1 + 3д, а1 = а4 - 3д = -4 + 3 * 1 = -1
Сумма = (а1 + а17) * 17 / 2, Сумма = [(-1 -17) * 17] / 2 = -18 * 17 / 2 = -9 * 17 = -153.
4,5(64 оценок)
Открыть все ответы
Ответ:
soymapoIina
soymapoIina
01.01.2021
(1) Основное тригонометрическое тождествоsin2(α) + cos2(α) = 1(2) Основное тождество через тангенс и косинус1 + tg^2(\alpha) = \frac{1}{cos^2(\alpha)}1+tg​2​​(α)=​cos​2​​(α)​​1​​(3) Основное тождество через котангенс и синус1 + ctg^2(\alpha) = \frac{1}{sin^2(\alpha)}1+ctg​2​​(α)=​sin​2​​(α)​​1​​(4) Соотношение между тангенсом и котангенсомtg(α)ctg(α) = 1(5) Синус двойного углаsin(2α) = 2sin(α)cos(α)(6) Косинус двойного углаcos(2α) = cos2(α) – sin2(α) = 2cos2(α) – 1 = 1 – 2sin2(α)(7) Тангенс двойного углаtg(2α) =  2tg(α)1 – tg2(α)(8) Котангенс двойного углаctg(2α) =ctg2(α) – 1  2ctg(α)(9) Синус тройного углаsin(3α) = 3sin(α)cos2(α) – sin3(α)(10) Косинус тройного углаcos(3α) = cos3(α) – 3cos(α)sin2(α)(11) Косинус суммы/разностиcos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β)(12) Синус суммы/разностиsin(α±β) = sin(α)cos(β) ± cos(α)sin(β)(13) Тангенс суммы/разностиtg(\alpha\pm\beta) = \frac{tg(\alpha) ~ \pm ~ tg(\beta)}{1 ~ \mp ~ tg(\alpha)tg(\beta)}tg(α±β)=​1 ∓ tg(α)tg(β)​​tg(α) ± tg(β)​​(14) Котангенс суммы/разностиctg(\alpha\pm\beta) = \frac{-1 ~ \pm ~ ctg(\alpha)ctg(\beta)}{ctg(\alpha) ~ \pm ~ ctg(\beta)}ctg(α±β)=​ctg(α) ± ctg(β)​​−1 ± ctg(α)ctg(β)​​(15) Произведение синусовsin(α)sin(β) = ½(cos(α–β) – cos(α+β))(16) Произведение косинусовcos(α)cos(β) = ½(cos(α+β) + cos(α–β))(17) Произведение синуса на косинусsin(α)cos(β) = ½(sin(α+β) + sin(α–β))(18) Сумма/разность синусовsin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β))(19) Сумма косинусовcos(α) + cos(β) = 2cos(½(α+β))cos(½(α–β))(20) Разность косинусовcos(α) – cos(β) = –2sin(½(α+β))sin(½(α–β))(21) Сумма/разность тангенсовtg(\alpha) \pm tg(\beta) = \frac{sin(\alpha\pm\beta)}{cos(\alpha)cos(\beta)}tg(α)±tg(β)=​cos(α)cos(β)​​sin(α±β)​​(22) Формула понижения степени синусаsin2(α) = ½(1 – cos(2α))(23) Формула понижения степени косинусаcos2(α) = ½(1 + cos(2α))(24) Сумма/разность синуса и косинусаsin(\alpha) \pm cos(\alpha) = \sqrt{2}sin(\alpha\pm\frac{\pi}{4})sin(α)±cos(α)=√​2​​​sin(α±​4​​π​​)(25) Сумма/разность синуса и косинуса с коэффициентамиAsin(\alpha) \pm Bcos(\alpha) = \sqrt{A^2+B^2}(sin(\alpha \pm arccos(\frac{A}{\sqrt{A^2+B^2}})))Asin(α)±Bcos(α)=√​A​2​​+B​2​​​​​(sin(α±arccos(​)))(26) Основное соотношение арксинуса и арккосинусаarcsin(x) + arccos(x) = π/2(27) Основное соотношение арктангенса и арккотангенсаarctg(x) + arcctg(x) = π/2

Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sin​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​(−1)​​2​​n​​−k​​C​k​n​​cos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n​​​​C​​2​​n​​​n​​​​+​2​n−1​​​​1​​∑​k=0​​2​​n​​−1​​C​k​n​​cos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sin​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​(−1)​​2​​n−1​​−k​​C​k​n​​sin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cos​n​​(α)=​2​n−1​​​​1​​∑​k=0​​2​​n−1​​​​C​k​n​​cos((n−2k)α)
4,7(28 оценок)
Ответ:
kotyaraasm
kotyaraasm
01.01.2021
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ...
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116

2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.
4,6(69 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ