Объяснение:
1.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч). ⇒
ответ: скорость течения реки 5 км/ч.
2.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч).
Пусть время, затраченное на путь против течения реки равно t₁, а
а время, затраченное на путь по течению реки равно t₂. ⇒
Суммируем эти уравнения:
По условию задачи на весь путь катер затратил t₁+t₂=2 (ч). ⇒
ответ: скорость течения реки 5 км/ч.
1. Пусть равное количество окуней равно х. ⇒
2. Первый рыболов поймал х+7,второй х+6, а третий х+8.
3. (x+7)+(x+6)+(x+8)=51
3x+21=51
3x=30 |:3
x=10 ⇒
ответ: первый рыболов поймал 17 окуней,
второй рыболов поймал 16 окуней,
третий рыболов поймал 18 окуней.
Объяснение:
1.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч). ⇒
ответ: скорость течения реки 5 км/ч.
2.
Пусть скорость течения реки равна х. ⇒
Против течения реки скорость катера будет равна 25-х (км/ч),
а по течению реки скорость катера будет равна 25+х (км/ч).
Пусть время, затраченное на путь против течения реки равно t₁, а
а время, затраченное на путь по течению реки равно t₂. ⇒
Суммируем эти уравнения:
По условию задачи на весь путь катер затратил t₁+t₂=2 (ч). ⇒
ответ: скорость течения реки 5 км/ч.
1. Пусть равное количество окуней равно х. ⇒
2. Первый рыболов поймал х+7,второй х+6, а третий х+8.
3. (x+7)+(x+6)+(x+8)=51
3x+21=51
3x=30 |:3
x=10 ⇒
ответ: первый рыболов поймал 17 окуней,
второй рыболов поймал 16 окуней,
третий рыболов поймал 18 окуней.
S = abc/4R
По 1-й формуле найдём площадь,а чтобы использовать 2-ю формулу, будем искать сторону с по т. косинусов.
a) S = 1/2*8*10*√3/2 = 20√3
б) с² = 64 +100 - 2*8*10*Сos60° = 64 +100 - 80= 84
c = 2√21
с) 20√3 = 8*10*2√21/4R
20√3 = 40√21/R
R = 40√21/20√3 = 2√7
ответ:14