ax² + bx + c = 0
D = b² - 4ac
x12 = (-b +- √D)/2a
D - это дискриминант
х12 - корни квадратного уравнения
+- это плюс минус
1
3x²+8x-21 = 3(x + (-4 - √79)/3)*(x + (-4 + √79)/3)
для разложения надо найти корни
D = 8² - 4*3*(-21) = 64 + 252 = 316
x12 = (-8 +- √316)/6 = (-4 +- √79)/3
2
5x²-4x+c=0
D = 16 - 20c = 0
16 - 20c = 0
20c = 16
c = 16/20 = 4/5
x12 = (4 + - 0)/10 = 4/10 = 2/5
корень 2/5
3
5x²-11 |x|-12=0
x² = |x|²
|x| вседа больше равен 0
5|x|²-11 |x|-12=0
D = 11² + 4*5*12 = 361 = 19²
|x| = (11 +- 19)/10 = 3 и -8/10
-8/10 < 0 не подходит
|x| = 3
x = 3
x = -3
ответ -3 и 3
* * * * * * * * * * * * * * * * * * * * * *
Числа x, y, z образуют (в указанном порядке) геометрическую прогрессию; числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию, а числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию. Найдите x, y и z.
ответ: 5 ; 15 и 45 или 5/9 ; -25/9 и 125/9 .
Объяснение: * * * x ; x*q ,x*q² , x≠0 * * *
y =x*q ; z =x*q², где q знаменатель геометрической прогрессии
числа x, y+10, z образуют (в указанном порядке) арифметическую прогрессию , значит y+10 =(x+z)/2⇔ 2(y+10) =x+z ⇔(символ эквив)
2(x*q+10) = x+x*q²⇔ x+x*q²- 2x*q=20⇔ x*(q-1)² =20 (1)
числа x, y+10 и z+80 (в указанном порядке) – также геометрическую прогрессию,следовательно (y+10)² = x(z+80) ⇔(x*q+10)² = x(xq²+80) ⇔
x²*q²+20x*q+100 = x²q²+80x ⇔20x*q+100 =80x⇔x*q+5 =4x ⇔
x*(4-q) = 5 (2)
первое уравнение (1) разделим на уравнение (2) получаем
x*(q-1)²/ x*(4-q) =20/5 ⇔(q-1)²/ (4-q) =4 ⇔ q²-2q+1 =16 -4q
q²+2q- 1 5 =0 ⇒ q =3 ; q = - 5
a) q = 3 ⇒ x = 5/(4-q) = 5/(4-3) = 5 5 ; 15 ; 45
b) q = - 5 ⇒ x = 5/(4-q) = 5/ (4-(5)) =5/9 5/9 ; -25/9 ; 125/9
a=3 b=-2 c=4
D=(-2)^2-4*3*4=4-48=-42 Дикриминант отрицательный нету решения!
Удачи в учебе)