Исходное число должно быть четырехзначным. Пусть исходное число будет ABCD=1000A+100B+10C+D. Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016: 1000A+100B+10C+D-(А+В+С+D)=2016 Раскроим скобки и решим: 1000A+100B+10C+D-А-В-С-D=2016 999А+99В+9С=2016 Сократим на 9: 111А+11В+С=224 Очевидно, что 1<А>3, т.е. А=2 (2000). 111*2+11В+С=224 222+11В+С=224 11В+С=224-222 11В+С=2 С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число. Значит В=0, тогда С=2-11*0=2 Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029. 9 – максимальное значение D, значит наибольшее возможное исходное значение 2029. Проверим: 2029 – (2+2+0+9)=2029-13=2016 ответ: наибольшее возможное исходное значение число 2029
в) (а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так или так: (а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3) или так: (√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)² как больше нравится
Уравнение окружности имеет формулу (x-a)^2 + (y-b)^2=R^2. преобразуем наше уравнение (х^2+4x+4)-4 +(y^2-18y+81)-81-60=0
(x=2)^2 + (y-9)^2 =145. R^2=145. R = корень из 145 (вроде бы так)