Пусть в турнире участвовало N человек.
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
ответ: 12 человек участвовало в турнире.
Пусть в турнире участвовало N человек.
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
ответ: 12 человек участвовало в турнире.
б) (3b - 2)(4b - 2) = 12b^2 - 8b - 6b + 4 = 12b^2 -14b + 4
в) (6a + x)(2a - 3x) = 12a^2 + 2ax - 18ax - 3x^2 = 12a^2 - 16ax - 3x^2
г) (c + 1) (c^2 + 3c + 2) = c^3 + c^2 + 3c^2 + 3c + 2c + 2 = c^3 + 4c^2 + 5c + 2