Круговой конус – основанием такого конуса является круг. Если в основании лежит эллипс, парабола или гипербола, то фигуры называются эллиптическим, параболическим или гиперболическим конусом. Стоит помнить, что два последних вида конуса имеют бесконечный объем.Усеченный конус – часть конуса, расположенная между основанием и плоскостью, параллельной этому основанию, находящейся между вершиной и основанием.Высота – перпендикулярный основанию отрезок, выпущенный из вершины.Образующая конуса – отрезок, соединяющий границу основания и вершину.Для расчета объема конуса применяется формула V=1/3*S*H, где S – площадь основания, H – высота. Так как основание конуса – круг, то его площадь находится по формуле S= nR^2, где n = 3,14, R – радиус окружности. Бывает ситуация, когда неизвестны какие-то из параметров: высота, радиус или образующая. В таком случае стоит прибегнуть к теореме Пифагора. Осевым сечением конуса является равнобедренный треугольник, состоящий из двух прямоугольных треугольника, где l – гипотенуза, а H и R – катеты. Тогда l=(H^2+R^2)^1/2.
2x² + 8x + 2y² = 9y
- 2x² - 8x - 2y² = - 18
0 = 9y - 18
y = 2
x² + 4x + 4 = 9
x² + 4x - 5 = 0
D = 16 + 20 = 36 = 6²
x1 = ( - 4 + 6 ) : 2 = 1
x2 = ( - 4 - 6 ) : 2 = - 5
ответ ( 1 ; 2 ) ; ( - 5 ; 2 )