М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sophiakrutko
sophiakrutko
25.01.2023 19:59 •  Алгебра

Разложите на множители: 169с^2-9х^2

👇
Ответ:
magrim600
magrim600
25.01.2023
169с^2-9х^2=9(169/9с^2-x^2)=9*(13/3c-x)*(13/3c+x)
4,5(50 оценок)
Ответ:
2018kat
2018kat
25.01.2023
169с^2-9х^2=(13с+3х)(13с-3х)
4,5(42 оценок)
Открыть все ответы
Ответ:
partsik95
partsik95
25.01.2023

Если в уравнении рассматриваются частные случаи sinx=0 и cosx=0, то пользуются более простыми формулами, и пользуются периодом П, так как  нули синуса и косинуса повторяются через период, равный П, хотя в общем случае наименьший положительный период для этих функций равен 2П.

sinx=0, x=πn

cosx=0, x=π/2+πn

В общем случае sinx=a, x=(-1)^n*arcsina+πn  и в случае sinx=0 можно было бы записать 

х=(-1)^n*arcsin0+πn=(-1)^n*0+πn=πn.

Если решаем ур-ие sinx=1, то x=π/2+2πn - частный случай, а в общем случае писали бы х=(-1)^n*arcsin1+πn=(-1)^n*π/2+πn - ,более сложный вид, но правольная запись.

sinx=-1 x=-π/2+2πn - частный случай 

Если cosx=a,то х=±arccosa+2πn.Можно для ур-ия cosx=0 записать решение через общую формулу х=±arccos0+2πn=±π/2+2πn (это более сложная запись, но правильная)

cosx=1, x=2πn

cosx=-1, x=π+2πn 

Для уравнений tgx=a, x=arctga+πn

                             ctgx=a, x=arcctga+πn

Итак, если использовать общие формулы, то период только для косинуса берём 2πn. а для остальных функций используем  πn.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,4(40 оценок)
Ответ:
Болыс111
Болыс111
25.01.2023

1

Пример 1. 2sin(3x - p/4) -1 = 0.

Решение. Решим уравнение относительно sin(3x - p/4). 

sin(3x - p/4) = 1/2, отсюда по формуле решения уравнения sinx = а нахо­дим 

3х - p/4 = (-1)n arcsin 1/2 + np, nÎZ.

Зх - p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;

x = (-1)n p/18 + p/12 + np/3, nÎZ

Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.

Если k = 2n + 1 (нечетное число), то х = - p/18 + p/12 + ((2pn + 1)p)/3 = 

= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.

ответ: х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,

или в градусах: х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.

Пример 2. sinx + Öз cosx = 1.

Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение при­мет вид

sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;

sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x - p/6) = 1/2. 

По формуле для уравнения cosx = а находим

х - p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;

x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;

x2 = - p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ; 

ответ: x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

4,4(31 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ