пусть О центр окружности, тогда
пусть ОК- перпендикуляр к ВС,
ОК и есть радиус треугольника
треугольники ОВС и КВО подобные, так как они оба прямоугольные, а угол В у них общий, тогда
ОК/ВО=ОС/ВС
ОС=6/2=3, ток как центр полувписаного круга делит пополам(равнобедренный ведь треугольник)
ВО^2=BC^2-OC^2=25-9=16
тогда
ОК=ОВ*ОС/ВС=4*3/5=12/5
тоесть радиус = 12/15
а далее расмотрим треугольник ВОК
BK^2=BO^2-OK^2=16-144/25=(400-144)/25=256/25=((16/5)^2
BK=16/5
КС=5-16/5=(25-16)/5=9/5
ответ
радиус 12/5
делит на отрезки
возле основы 9/5
возле вершины 16/5
Для того чтобы найти промежутки возрастания и убывания необходимо взять производна от данной функции и решить следующие неравенстваy' (x) 0 при х удовлетворяющих этому неравенству функция возрастает Найдем y' (x) = (0.5cos (x) - 2) '=-0.5sin (x) Теперь решим неравенство:-0.5sin (x) 0 Это неравенство имеет решения при Значит на этих интервалах функция убывает. Теперь рассмотри неравенство - 0.5sin (x) >0 оно эквивалентно неравенству: sin (x) <0 И имеет следующие решения: Значит на этих интервалах функция возрастает. На границах интервалов функция имеет точку перегиба. ответ: Функция y=0,5cos (x) - 2 возрастает при Убывает при И имеет точки перегиба при
D=b^2-4ac=36-480<0
Уравнение не имеет корней