где ответ Дˆ)つ (づ ●─● )づ (つ≧▽≦)つ (づ ●─● )づ (つ≧▽≦)つ (⊃。•́‿•̀。)⊃ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌
Объяснение:
┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] ( ‾́ ◡ ‾́ ) ⟵(๑¯◡¯๑) {[(-_-)(-_-)]} {[(-_-)(-_-)]} o(〃^▽^〃)o (⁄ ⁄•⁄ω⁄•⁄ ⁄) (╭☞•́⍛•̀)╭☞ (╯°口°)╯︵ ┻━┻ (ノT_T)ノ ^┻━┻ ♪ \\(^ω^\\ ) (ノ≧∇≦)ノ ミ ┻━┻ (┛◉Д◉)┛彡┻━┻ (ノ◕ヮ◕)ノ*.✧ ᕙ(@°▽°@)ᕗ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ
График квадратичной функции - это парабола.
Коэффициент а отвечает за направление ветвей параболы (а>0 - ветви направлены вверх, a<0 - ветви направлены вниз).Дискриминант D отвечает за пересечение параболы с осью абсцисс (ось ОХ). D>0 - две точки пересечения, D=0 - одна точка пересечения, D<0 - точек пересечения нет.-b/2a - уравнение x₀, то есть это значение х вершины параболы.Коэффициент с отвечает за ординату (значение y) точки пересечения параболы с осью ординат (ось ОУ).Таким образом, чтобы схематично изобразить графики, нам нужно просто разобраться, как они себя ведут в конкретном случае (с сведений выше).
P.S. В четвертом случае точно имелось в виду значение с, а не D? Просто от этого меняется график.
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное)
Применим метод Эйлера
Пусть
Корни которого
Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное)
где
Сравнивая
уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
уч.н.
Запишем общее решение исходного уравнения