Пусть а1 и аn соответственно первый и n- ый члены арифметической прогрессии, d- разность прогрессии. известно, что a1=5, an= -163, d=-7. найдите n- число членов арифметической прогрессии и sn- сумму n первых членов
Нюше нужен уникальный набор: ручка + карандаш + тетрадь! И она в нужном месте! Каждый товар в этом магазине уникален!
Это задача на классическое правило умножения: Если объект можно выбрать и если после каждого такого выбора объект можно выбрать то выбор пары в указанном порядке можно осуществить
------------------------------------------------ Нужно последовательно одно за другим осуществить три действия (в любом порядке): выбор КАРАНДАША, выбор РУЧКИ, выбор ТЕТРАДИ.
Пусть сначала выбирается карандаш, потом ручка, потом тетрадь: - первое действие можно осуществить И ПРИ ЛЮБОМ ЕГО ОСУЩЕСТВЛЕНИЯ второе действие можно осуществить и в конце ПРИ ЛЮБОМ ОСУЩЕСТВЛЕНИЯ ПЕРВЫХ ДВУХ ДЕЙСТВИЙ третье действие можно осуществить
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
-163=5+7-7n
7n=175
n=25
S25=25(10-168)/2=12,5*(-158)= -1975