М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pomogyte67
pomogyte67
03.07.2021 15:56 •  Алгебра

Решение неравенств: 8-2y/y+1> 3y/y-1 решите)

👇
Ответ:
KseniaSob
KseniaSob
03.07.2021
Решение задания смотри на фотографии
Решение неравенств: 8-2y/y+1> 3y/y-1 решите)
4,8(31 оценок)
Открыть все ответы
Ответ:
Karbobo
Karbobo
03.07.2021

Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)


Решим к примеру x^7=x+6 уравнение в действительных корнях.

Рассмотрим функцию y=x^7. Эта функция является возрастающей на всей числовой прямой.

Также рассмотрим правую часть уравнения: функцию y=x+6. Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).


графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.


Возьмем теперь к примеру уравнение ax^2+bx+c=0,~~ a\ne0

D=b^2-4ac

Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.

Если D=0, то квадратное уравнение имеет два равные корни.

Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.


Как узнать, сколько корней имеет уравнение? к примеру x^7=x+6
4,4(46 оценок)
Ответ:
katerinamorozo2
katerinamorozo2
03.07.2021

найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.

4,7(76 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ