М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pvi00o2mailru
pvi00o2mailru
02.07.2020 23:56 •  Алгебра

Выполни умножение: (2a^5−7b^2)⋅(2a^5+7b^2)

👇
Ответ:
sonashkumatova
sonashkumatova
02.07.2020
(2a^5-7b^2)(2a^5+7b^2)=(2a^5)^2-(7b^2)^2=4a^10-49b^4.
4,5(50 оценок)
Ответ:
catcher1
catcher1
02.07.2020
( 2а^5 - 7b^2 )( 2a^5 + 7b^2 ) = ( 2a^5 )^2 - ( 7b^2 )^2 = 4a^10 - 49b^4
4,4(36 оценок)
Открыть все ответы
Ответ:
SimbatDuysebek
SimbatDuysebek
02.07.2020

a=4

(2;1)

Объяснение:

Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.

 

Получим:

ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.

 

При таком значении коэффициента a данная система примет вид:

{4x+3y=115x+2y=12

 

Для решения этой системы уравнений  графически построим в одной координатной плоскости графики каждого из уравнений.

Графиком уравнения 4x+3y=11 является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x −1 2

y 5 1

 

Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.

Графиком уравнения 5x+2y=12 также является прямая.

 

Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.

 

x 0 2

y 6 1

 

Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.

 

Получим:

 

Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)

Объяснение:

4,4(71 оценок)
Ответ:
саня9999999
саня9999999
02.07.2020
Найдите координаты вершины параболы:
а) f(x)=x²-6x+4;
б) f(x)=-x²-4x+1
в)f(x)=3x²-12x+2;

При вычислении воспользуйтесь формулами 
m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c

Решение:
а) f(x)=x²-6x+4;
В приведенном уравнение b =-6, a=1
m=x=-b/2a =-(-6)/(2*1)=6/2=3
n=y(3)=3²-6*3+4=9-18+4=-5
Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5

б) f(x)=-x²-4x+1
В приведенном уравнение b =-4, a=-1
m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2
n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5
Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5

в)f(x)=3x²-12x+2

В приведенном уравнение b =-12, a=3
m=x=-b/2a =-(-12)/(2*3)=12/6= 2
n=y(2)=3*2²-12*2+2=12-24+2= -10
Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
4,5(13 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ