Каждый нуль получается при умножении 5 на 2. Чётных чисел больше, чем кратных 5. Поэтому число нулей в факториале определяется числом множителей, кратных 5. При этом надо учитывать, что два множителя: 25 и 50 - содержат по две пятёрки. Остальные 8 множителей - по одной. Итого 8+2+2=12 нулей.
Покажем, и докажем, что утверждение верно так же для n=k+1.
Так как , следуя предположению то прибавив к данному выражению d. Мы получим следующий член . Т.е. предположение верно. Ч.Т.Д.
2)
База : 1 Проверка: .
Предположение:
Теперь покажем и докажем, что данное выражение верно и при :
Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить k+1 член (используя формулу которую мы доказали ранее):
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.
3) Это не формула общего члена, это формула суммы. При получается деление на ноль, поэтому сразу пишем База: 1
Предположим, что формула верна для: Покажем и докажем что формула верна для : Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
Итого 8+2+2=12 нулей.