Чтобы число делилось на 5, оно должно заканчиваться на 0 или 5
рассмотрим те числа, которые заканчиваются на 0 тогда при условии: каждое число не должно содержать одинаковых цифр составляем числа: на первом месте может стоять любая из цифр 1,5,8,9 - 4 варианта на втором месте - любая из оставшихся ТРЕХ, (одну забрали на первое место) - 3 варианта на третьем месте стоит 0 Всего таких чисел 4*3*1=12
рассмотрим те числа, которые заканчиваются на 5 тогда на первое место мы выберем любое из 1,8,9 (0 на первом месте стоять не может) на второе место выберем из оставшихся двух и 0- всего 3 варианта значит чисел всего 3*3*1=9
Представим множество возможных исходов как квадрат 60x60 на плоскости Oxy (0 <= x <= 60, 0 <= y <= 60), x - время, в которое на встречу пришел один человек, y - другой. "Отметим" на нем множество благоприятных исходов, когда встреча состоялась: ему соответствует область, для которой выполняется условие |x - y| <= 18 (они пришли на место встречи с разницей во времени <= 18 минут). Границы области - прямые y = x + 18 и y = x - 18. Отношение площади фигуры, ограниченной этими прямыми, ко всей площади квадрата - и есть вероятность удачной встречи. Площадь фигуры удобно искать, вычитая из площади квадрата площади треугольников в левом-верхнем и правом-нижнем углах. 60^2 - 1/2 (60-18)^2 - 1/2 (60-18)^2 = 3600 - 1764 = 1836 Искомая вероятность = 1836 / 3600 = 0,51
6x=7-y
y=7-6x
ответы: (1;1); (0;7) ; (-3; 2,5)