М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pawelikot
Pawelikot
28.06.2021 12:58 •  Алгебра

При каких значениях t двучлен 10t−15 принимает неотрицательные значения?

👇
Ответ:
shkmidtvp07466
shkmidtvp07466
28.06.2021
Неотрицательные значения, т.е. значения большие или равные нулю.
Чтобы ответить на этот вопрос, достаточно решить неравенство:
10t-15≥0
10t≥15
t≥1,5
при t∈[1,5;+∞) двучлен принимает неотрицательные значения
4,8(54 оценок)
Открыть все ответы
Ответ:
ёлкап
ёлкап
28.06.2021

 

0 1 −2

a) f (x, y) = x1 y1 +5x2 y2 +6x3 y3 +2x1 y3 +2x3 y1 +3x2 y3 +3x3 y2 ,  2 0 −1  .

3 −2 0

 f (x, y) = 2x1 y1 + 3x2 y2 + x3 y3 + 2x1 y2 + 2x2 y1 + x1 y3 + x3 y1 + x2 y3 + x3 y2 ,

b) 

2 1 1

 −1 −3 1  .

1 2 −1

9.5. Даны два вектора a и b в унитарном(евклидовом) пространстве. Най-

ти сопряженный оператор к линейному оператору φ(x) = (x, a)b.

9.6. Найти сопряженный оператор к линейному оператору φ(x) = [x, a] в

пространстве геометрических векторов.

9.7. Пусть xOy декартова система координат на плоскости и φ проекти-

рование на ось 0x параллельно биссектрисе первой и третьей четверти.

Найти сопряженный оператор φ∗ .

9.8. Путь V пространство вещественных многочленов со скалярным про-

1

изведением (f, g) = i! ai bi , f (x) = ai xi и g(x) = bi xi . Доказать, что

сопряженный оператор к оператору дифференцирования в V совпадает с

оператором умножения на x. Найти сопряженный оператор к дифферен-

циальному оператору ψ(f ) = x3 f .

9.9. Пусть V пространство финитных функций на R ( финитная функция

– бесконечно дифференцируемая функция, равная нулю вне некоторого

+∞

отрезка) со скалярным произведением (f, g) = −∞ f (x)g(x)dx. Найти со-

пряженный оператор к оператору дифференцирования D(f ) = f . Найти

сопряженный оператор к дифференциальному оператору ψ(f ) = x3 f .

9.10. Пусть V евклидово пространство вещественных n Ч n-матриц со

скалярным произведением (X, Y ) = TrXY t (см. задачу 7.11). Найти со-

пряженный оператор к оператору умножения φ(X) = AX на некоторую

матрицу A.

11

§10. Самосопряженные операторы

10.1. Найти диагональную форму и ортонормированный базис из соб-

ственных векторов для самосопряженного оператора, заданного в орто-

нормированном базисе матрицей:

   

1 2 −2 −1 2 −3

−2 3

a) , b)  2 1 −7  , c)  2 2 −6 

3 6

−2 −7 1 −3 −6 7

 √ √     

√0 2 − 2 4 −1 2 −2 1 4

d)  √ − 1 − 7  , e)  −1 4 −2  , f )  1 −2 4  ,

2 2 2

− 2 −2 −1

7

2

2 −2 7 4 4 13

   

0 0 0 1 0 1 1 1

0 0 1 0

 , h)  1 0 1 1 

 

g) 

0 1 0 0 1 1 0 1

1 0 0 0 1 1 1 0

3 2 + 2i 3 −i 3 2−i

k) , m) , n) .

2 − 2i 1 i 3 2+i 7

10.2. a) Доказать, что оператор φ(f ) = (x2 − 1)f + 2xf является само-

сопряженным оператором в евклидовом пространстве вещественных мно-

+1

гочленов относительно скалярного произведения (f, g) = −1 f (x)g(x)dx.

dk

b) Доказать, что многочлены Лежандра Qk (x) = dxk (x2 − 1)k составляют

ортогональный базис из собственных векторов оператора φ. Найти соб-

ственные значения для Qk (x).

§11. Ортогональные и унитарные операторы

11.1. Найти ортонормированный базис из собственный векторов для уни-

тарных операторов, заданных матрицами:

cos α − sin α 1 1+i 1

a) (α = kπ), b) √ .

sin α cos α 3 −1 1 − i

11.2. Найти каноническую матрицу и канонический канонический базис

ортогонального оператора, заданного в некотором ортонормированном ба-

4,8(52 оценок)
Ответ:
Максоон20022
Максоон20022
28.06.2021

Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график   у=f(х).

По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две  клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем  от аргумента π/3

Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.

по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.

Вот такие вот преобразования графика тригонометрической функции.

4,5(57 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ