ответобьяснение
Объяснение:
при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.при имеющемся знаменателе необходимо производить деление такого типа функции как
y
=
x
+
2
⋅
x
x
4
−
1
;
при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа
y
=
√
x
+
1
или
y
=
x
√
2
3
⋅
x
+
3
;
при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как
y
=
5
⋅
(
x
+
1
)
−
3
,
y
=
−
1
+
x
1
1
3
,
y
=
(
x
3
−
x
+
1
)
√
2
, которые определены не для всех чисел;
при наличии переменной под знаком логарифма или в основании вида
y
=
ln
x
2
+
x
4
или
y
=
1
+
log
x
−
1
(
x
+
1
)
причем основание является числом положительным, как и число под знаком логарифма;
при наличии переменной, находящейся под знаком тангенса и котангенса вида
y
=
x
3
+
t
g
(
2
⋅
x
+
5
)
или
y
=
c
t
g
(
3
⋅
x
3
−
1
)
, так как они существуют не для любого числа;
при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида
y
=
a
r
c
sin
(
x
+
2
)
+
2
⋅
x
2
,
y
=
a
r
c
cos
(
|
x
−
1
|
+
x
)
, область определения которых определяется ни интервале от
−
1
до
1
.
Задание № 2:
При каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0<а<4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а>4 - 2 корня (от исходной параболы)
ответ: 4