М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MAJlORIK
MAJlORIK
26.10.2022 10:30 •  Алгебра

30 ! при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?

👇
Ответ:
viparistocrate
viparistocrate
26.10.2022

Задание № 2:

При каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?

введем функцию

y=|x^2−2x−3|

рассмотрим функцию без модуля

y=x^2−2x−3

y=(x−3)(х+1)

при х=3 и х=-1 - у=0

х вершины = 2/2=1

у  вершины = 1-2-3=-4

после применения модуля график отражается в верхнюю полуплоскость

при а=0 - 2 корня (нули х=3 и х=-1)

при 0<а<4 - 4 корня (2 от исходной параболы, 2 от отображенной части)

при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)

при а>4 - 2 корня (от исходной параболы)

ответ: 4

 

4,5(18 оценок)
Открыть все ответы
Ответ:
неточно1
неточно1
26.10.2022
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
4,6(26 оценок)
Ответ:
1шрус220
1шрус220
26.10.2022

ответобьяснение

Объяснение:

при имеющемся знаменателе необходимо производить деление такого типа функции как

y

=

x

+

2

x

x

4

1

;

при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа

y

=

x

+

1

или

y

=

x

2

3

x

+

3

;

при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как

y

=

5

(

x

+

1

)

3

,

y

=

1

+

x

1

1

3

,

y

=

(

x

3

x

+

1

)

2

, которые определены не для всех чисел;

при наличии переменной под знаком логарифма или в основании вида

y

=

ln

x

2

+

x

4

или

y

=

1

+

log

x

1

(

x

+

1

)

причем основание является числом положительным, как и число под знаком логарифма;

при наличии переменной, находящейся под знаком тангенса и котангенса вида

y

=

x

3

+

t

g

(

2

x

+

5

)

или

y

=

c

t

g

(

3

x

3

1

)

, так как они существуют не для любого числа;

при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида

y

=

a

r

c

sin

(

x

+

2

)

+

2

x

2

,

y

=

a

r

c

cos

(

|

x

1

|

+

x

)

, область определения которых определяется ни интервале от

1

до

1

.при имеющемся знаменателе необходимо производить деление такого типа функции как

y

=

x

+

2

x

x

4

1

;

при наличии переменной под знаком корня необходимо обращать внимание на корень четной степени типа

y

=

x

+

1

или

y

=

x

2

3

x

+

3

;

при наличии переменной в основании степени с отрицательным или нецелым показателем такого типа, как

y

=

5

(

x

+

1

)

3

,

y

=

1

+

x

1

1

3

,

y

=

(

x

3

x

+

1

)

2

, которые определены не для всех чисел;

при наличии переменной под знаком логарифма или в основании вида

y

=

ln

x

2

+

x

4

или

y

=

1

+

log

x

1

(

x

+

1

)

причем основание является числом положительным, как и число под знаком логарифма;

при наличии переменной, находящейся под знаком тангенса и котангенса вида

y

=

x

3

+

t

g

(

2

x

+

5

)

или

y

=

c

t

g

(

3

x

3

1

)

, так как они существуют не для любого числа;

при наличии переменной, расположенной под знаком арксинуса или арккосинуса вида

y

=

a

r

c

sin

(

x

+

2

)

+

2

x

2

,

y

=

a

r

c

cos

(

|

x

1

|

+

x

)

, область определения которых определяется ни интервале от

1

до

1

.

4,7(95 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ