М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PANDAnumber
PANDAnumber
15.02.2022 05:40 •  Алгебра

Две бригады выполняют некоторую работу. сначала они работали вместе три дня, потом одна бригада работала три дня. вместе они отработали 50% всей работы. сколько дней работали бы они отдельно, если за 42 дня они выполняют пятикратную работу

👇
Ответ:
margarinfox
margarinfox
15.02.2022
Мне кажется что они бы работали 84 дня и выполнили бы работу на 100%
4,6(40 оценок)
Открыть все ответы
Ответ:
макс3106
макс3106
15.02.2022
8). в одной системе координат построить графики функций:
а) у = - 1/5x - это график прямой пропорциональности, Он проходит через начало координат. Значит 1 точка известна. Вторую находят, подставив любое значение х и высчитывают значение у. Например:
х = 1   у = -(1/5)*1 = -(1/5). Чтобы числа были целыми:
х = 5   у = -(1/5)*5 = -1.
б) у = 5 - это горизонтальная линия, проходящая через ординату у = 5.
6) линейная функция, график которой параллелен прямой у = 4 + 7х и проходит через начало координат.- это у = 7х.
4,6(97 оценок)
Ответ:
Gurusergo
Gurusergo
15.02.2022
Логарифмические уравненияУравнение, содержащее неизвестное под знаком логарифма или (и) в его основании, называется логарифмическим уравнением.Простейшим логарифмическим уравнением является уравнение видаloga x = b.(1)Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = ab.Пример 1. Решить уравнения:a) log2 x = 3,       b) log3 x = -1,       c) Решение. Используя утверждение 1, получим 
a) x = 23 или x = 8;     b) x = 3-1 или x = 1/3;     c)  или x = 1.Приведем основные свойства логарифма.P1. Основное логарифмическое тождество:где a > 0, a ≠ 1 и b > 0.P2. Логарифм произведения положительных сомножителей равен сумме логарифмов этих сомножителей:loga N1·N2 = loga N1 + loga N2       (a > 0, a ≠ 1, N1 > 0, N2 > 0).Замечание. Если N1·N2 > 0, тогда свойство P2 примет видloga N1·N2 = loga |N1| + loga |N2|       (a > 0, a ≠ 1, N1·N2 > 0).P3. Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя       (a > 0, a ≠ 1, N1 > 0, N2 > 0).Замечание. Если , (что равносильно N1N2 > 0) тогда свойство P3 примет вид       (a > 0, a ≠ 1, N1N2 > 0).P4. Логарифм степени положительного числа равен произведению показателя степени на логарифм этого числа:loga N k = k loga N         (a > 0, a ≠ 1, N > 0).Замечание. Если k - четное число (k = 2s), тоloga N 2s = 2s loga |N|       (a > 0, a ≠ 1, N ≠ 0).P5. Формула перехода к другому основанию:       (a > 0, a ≠ 1, b > 0, b ≠ 1, N > 0),в частности, если N = b, получим      (a > 0, a ≠ 1, b > 0, b ≠ 1).(2)Используя свойства P4 и P5, легко получить следующие свойства      (a > 0, a ≠ 1, b > 0, c ≠ 0),(3)          (a > 0, a ≠ 1, b > 0, c ≠ 0),(4)        (a > 0, a ≠ 1, b > 0, c ≠ 0),(5)и, если в (5) c - четное число (c = 2n), имеет место        (b > 0, a ≠ 0, |a| ≠ 1).(6)Перечислим и основные свойства логарифмической функции f(x) = loga x:Область определения логарифмической функции есть множество положительных чисел.Область значений логарифмической функции - множество действительных чисел.При a > 1 логарифмическая функция строго возрастает (0 < x1 < x2 Þ loga x1 < loga x2), а при 0 < a < 1, - строго убывает (0 < x1 < x2  Þ loga x1 > loga x2).loga 1 = 0 и loga a = 1     (a > 0, a ≠ 1).Если a > 1, то логарифмическая функция отрицательна при x Î (0;1) и положительна при x Î (1;+¥), а если 0 < a < 1, то логарифмическая функция положительна при x Î (0;1) и отрицательна при x Î (1;+¥).Если a > 1, то логарифмическая функция выпукла вверх, а если a Î (0;1) - выпукла вниз.Следующие утверждения (см., например, [1]) используются при решении логарифмических уравнений.Утверждение 2. Уравнение loga f(x) = loga g(x)     (a > 0, a ≠ 1) равносильно одной из систем (очевидно, выбирается та система, неравенство которой решается проще)f(x) = g(x),       f(x) = g(x),f(x) > 0,g(x) > 0.Утверждение 3. Уравнение logh(x) f(x) = logh(x) g(x) равносильно одной из системf(x) = g(x),        f(x) = g(x),h(x) > 0,h(x) > 0,h(x) ≠ 1,h(x) ≠ 1,f(x) > 0,g(x) > 0.
4,7(93 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ